Previous |  Up |  Next

Article

Title: Linear liftings of skew symmetric tensor fields of type $(1,2)$ to Weil bundles (English)
Author: Dębecki, Jacek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 933-943
Summary lang: English
.
Category: math
.
Summary: The paper contains a classification of linear liftings of skew symmetric tensor fields of type $(1,2)$ on $n$-dimensional manifolds to tensor fields of type $(1,2)$ on Weil bundles under the condition that $n\ge 3.$ It complements author's paper ``Linear liftings of symmetric tensor fields of type $(1,2)$ to Weil bundles'' (Ann. Polon. Math. {\it 92}, 2007, pp. 13--27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author's paper ``Affine liftings of torsion-free connections to Weil bundles'' (Colloq. Math. {\it 114}, 2009, pp. 1--8) and get a classification of affine liftings of all linear connections to Weil bundles. (English)
Keyword: natural operator
Keyword: Weil bundle
MSC: 58A32
idZBL: Zbl 1224.58004
idMR: MR2738957
.
Date available: 2010-11-20T13:53:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140794
.
Reference: [1] Dębecki, J.: Linear liftings of skew-symmetric tensor fields to Weil bundles.Czech. Math. J. 55 (130) (2005), 809-816. MR 2153104, 10.1007/s10587-005-0067-0
Reference: [2] Dębecki, J.: Linear liftings of $p$-forms to $q$-forms on Weil bundles.Monatsh. Math. 148 (2006), 101-117. MR 2235358, 10.1007/s00605-005-0348-6
Reference: [3] Dębecki, J.: Linear liftings of symmetric tensor fields of type $(1,2)$ to Weil bundles.Ann. Polon. Math. 92 (2007), 13-27. MR 2318507, 10.4064/ap92-1-2
Reference: [4] Dębecki, J.: Affine liftings of torsion-free connections to Weil bundles.Colloq. Math. 114 (2009), 1-8. MR 2457274, 10.4064/cm114-1-1
Reference: [5] Doupovec, M., Mikulski, W. M.: On the existence of prolongation of connections.Czech. Math. J. 56 (131) (2006), 1323-1334. Zbl 1164.58300, MR 2280811, 10.1007/s10587-006-0096-3
Reference: [6] Eck, D. J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133-140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [7] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1-41. Zbl 0813.53010, MR 1295815, 10.1017/S0027763000004931
Reference: [8] Kainz, G., Michor, P.: Natural transformations in differential geometry.Czech. Math. J. 37 (112) (1987), 584-607. Zbl 0654.58001, MR 0913992
Reference: [9] Kolář, I.: On natural operators on vector fields.Ann. Global Anal. Geom. 6 (1988), 109-117. MR 0982760, 10.1007/BF00133034
Reference: [10] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag Berlin (1993). MR 1202431
Reference: [11] Kurek, J., Mikulski, W. M.: Canonical symplectic structures on the $r$th order tangent bundle of a symplectic manifold.Extr. Math. 21 (2006), 159-166. Zbl 1141.58002, MR 2292745
Reference: [12] Luciano, O.: Categories of multiplicative functors and Weil's infinitely near points.Nagoya Math. J. 109 (1988), 69-89. Zbl 0661.58007, MR 0931952, 10.1017/S0027763000002774
Reference: [13] Mikulski, W. M.: The geometrical constructions lifting tensor fields of type $(0,2)$ on manifolds to the bundles of $A$-velocities.Nagoya Math. J. 140 (1995), 117-137. Zbl 0854.53018, MR 1369482, 10.1017/S0027763000005444
Reference: [14] Morimoto, A.: Prolongations of connections to bundles of infinitely near points.J. Diff. Geom. 11 (1976), 479-498. MR 0445422, 10.4310/jdg/1214433720
Reference: [15] Weil, A.: Théorie des points proches sur les variétés différentielles.Colloques Internat. Centre Nat. Rech. Sci. 52 (1953), 111-117 French. MR 0061455
.

Files

Files Size Format View
CzechMathJ_60-2010-4_4.pdf 257.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo