Title:
|
A class of weakly perfect graphs (English) |
Author:
|
Maimani, H. R. |
Author:
|
Pournaki, M. R. |
Author:
|
Yassemi, S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
1037-1041 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A graph is called weakly perfect if its chromatic number equals its clique number. In this note a new class of weakly perfect graphs is presented and an explicit formula for the chromatic number of such graphs is given. (English) |
Keyword:
|
chromatic number |
Keyword:
|
clique number |
Keyword:
|
weakly perfect graph |
MSC:
|
05C17 |
MSC:
|
05C69 |
MSC:
|
11A25 |
idZBL:
|
Zbl 1224.05376 |
idMR:
|
MR2738964 |
. |
Date available:
|
2010-11-20T13:57:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140801 |
. |
Reference:
|
[1] Garey, M. R., Johnson, D. S.: Computers and Intractabilitiy: A Guide to the Theory of NP-Completeness.W. H. Freman and Company, New York (1979). MR 0519066 |
Reference:
|
[2] Kubale, M.: Graph Colorings.American Mathematical Society (2004). Zbl 1064.05061, MR 2074481 |
Reference:
|
[3] McDiarmid, C., Reed, B.: Channel assignment and weighted colouring.Networks 36 (2000), 114-117. MR 1793319, 10.1002/1097-0037(200009)36:2<114::AID-NET6>3.0.CO;2-G |
Reference:
|
[4] West, D. B.: Introduction to Graph Theory.Prentice Hall, Inc., Upper Saddle River, NJ (1996). Zbl 0845.05001, MR 1367739 |
. |