Title:
|
A note on the powers of Cesàro bounded operators (English) |
Author:
|
Léka, Zoltán |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
1091-1100 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$ (English) |
Keyword:
|
Volterra operator |
Keyword:
|
stability of operators |
MSC:
|
47A35 |
MSC:
|
47B37 |
MSC:
|
47B38 |
idZBL:
|
Zbl 1220.47014 |
idMR:
|
MR2738971 |
. |
Date available:
|
2010-11-20T14:00:44Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140808 |
. |
Reference:
|
[1] Allan, G. R.: Power-bounded elements in a Banach algebra and a theorem of Gelfand.In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. Zbl 0703.46029, MR 1021992 |
Reference:
|
[2] Allan, G. R.: Power-bounded elements and radical Banach algebras.In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. Zbl 0884.47003, MR 1456997 |
Reference:
|
[3] Batty, C. J. K.: Asymptotic behaviour of semigroups of operators.In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. Zbl 0818.47034, MR 1285599 |
Reference:
|
[4] Chill, R., Tomilov, Y.: Stability of operator semigroups: ideas and results.In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. Zbl 1136.47026, MR 2336713 |
Reference:
|
[5] Esterle, J.: Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras.Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. MR 0697579, 10.1007/BFb0064548 |
Reference:
|
[6] Halmos, P.: Hilbert Space Problem Book. Grad. Texts in Math.Mir Moskau (1970). MR 0268689 |
Reference:
|
[7] Katznelson, Y., Tzafriri, L.: On power bounded operators.J. Funct. Anal. 68 (1986), 313-328. Zbl 0611.47005, MR 0859138, 10.1016/0022-1236(86)90101-1 |
Reference:
|
[8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.: Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator.Proc. London Math. Soc. 91 (2005), 761-788. MR 2180462 |
Reference:
|
[9] Pytlik, T.: Analytic semigroups in Banach algebras and a theorem of Hille.Colloq. Math. 51 (1987), 287-294. Zbl 0632.46043, MR 0891298, 10.4064/cm-51-1-287-294 |
Reference:
|
[10] Szegö, G.: Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23.Amer. Math. Soc. Providence (1975). MR 0310533 |
Reference:
|
[11] Tomilov, Y., Zem�nek, J.: A new way of constructing examples in operator ergodic theory.Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. MR 2075049, 10.1017/S0305004103007436 |
Reference:
|
[12] Tsedenbayar, D.: On the power boundedness of certain Volterra operator pencils.Studia Math. 156 (2003), 59-66. Zbl 1028.47002, MR 1961061, 10.4064/sm156-1-4 |
Reference:
|
[13] Zemánek, J.: On the Gelfand-Hille theorems.In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. MR 1285622 |
. |