Previous |  Up |  Next

Article

Title: A note on the powers of Cesàro bounded operators (English)
Author: Léka, Zoltán
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1091-1100
Summary lang: English
.
Category: math
.
Summary: In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$ (English)
Keyword: Volterra operator
Keyword: stability of operators
MSC: 47A35
MSC: 47B37
MSC: 47B38
idZBL: Zbl 1220.47014
idMR: MR2738971
.
Date available: 2010-11-20T14:00:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140808
.
Reference: [1] Allan, G. R.: Power-bounded elements in a Banach algebra and a theorem of Gelfand.In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. Zbl 0703.46029, MR 1021992
Reference: [2] Allan, G. R.: Power-bounded elements and radical Banach algebras.In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. Zbl 0884.47003, MR 1456997
Reference: [3] Batty, C. J. K.: Asymptotic behaviour of semigroups of operators.In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. Zbl 0818.47034, MR 1285599
Reference: [4] Chill, R., Tomilov, Y.: Stability of operator semigroups: ideas and results.In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. Zbl 1136.47026, MR 2336713
Reference: [5] Esterle, J.: Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras.Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. MR 0697579, 10.1007/BFb0064548
Reference: [6] Halmos, P.: Hilbert Space Problem Book. Grad. Texts in Math.Mir Moskau (1970). MR 0268689
Reference: [7] Katznelson, Y., Tzafriri, L.: On power bounded operators.J. Funct. Anal. 68 (1986), 313-328. Zbl 0611.47005, MR 0859138, 10.1016/0022-1236(86)90101-1
Reference: [8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.: Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator.Proc. London Math. Soc. 91 (2005), 761-788. MR 2180462
Reference: [9] Pytlik, T.: Analytic semigroups in Banach algebras and a theorem of Hille.Colloq. Math. 51 (1987), 287-294. Zbl 0632.46043, MR 0891298, 10.4064/cm-51-1-287-294
Reference: [10] Szegö, G.: Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23.Amer. Math. Soc. Providence (1975). MR 0310533
Reference: [11] Tomilov, Y., Zem�nek, J.: A new way of constructing examples in operator ergodic theory.Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. MR 2075049, 10.1017/S0305004103007436
Reference: [12] Tsedenbayar, D.: On the power boundedness of certain Volterra operator pencils.Studia Math. 156 (2003), 59-66. Zbl 1028.47002, MR 1961061, 10.4064/sm156-1-4
Reference: [13] Zemánek, J.: On the Gelfand-Hille theorems.In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. MR 1285622
.

Files

Files Size Format View
CzechMathJ_60-2010-4_18.pdf 251.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo