Title:
|
$C$-Gorenstein projective, injective and flat modules (English) |
Author:
|
Yang, Xiao Yan |
Author:
|
Liu, Zhong Kui |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
1109-1129 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
By analogy with the projective, injective and flat modules, in this paper we study some properties of $C$-Gorenstein projective, injective and flat modules and discuss some connections between $C$-Gorenstein injective and $C$-Gorenstein flat modules. We also investigate some connections between $C$-Gorenstein projective, injective and flat modules of change of rings. (English) |
Keyword:
|
$C$-Gorenstein projective module |
Keyword:
|
$C$-Gorenstein injective module |
Keyword:
|
$C$-Gorenstein flat module |
MSC:
|
13D07 |
MSC:
|
16E65 |
idZBL:
|
Zbl 1224.13014 |
idMR:
|
MR2738973 |
. |
Date available:
|
2010-11-20T14:01:51Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140810 |
. |
Reference:
|
[1] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007 |
Reference:
|
[2] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, de Gruyter Exp. Math. Walter de Gruyter and Co., Berlin.(2000). MR 1753146 |
Reference:
|
[3] Enochs, E. E., Iacos, A., Jenda, O. M. G.: Closure under transfinite extensions.Illinois J. Math. 51 (2007), 561-569. MR 2342674, 10.1215/ijm/1258138429 |
Reference:
|
[4] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007 |
Reference:
|
[5] Holm, H., Jørgensen, P.: Cohen-Macaulay homological dimensions.Rend. Semin. Mat. Univ. Padova 117 (2007), 87-112. MR 2351787 |
Reference:
|
[6] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. MR 2203625, 10.1016/j.jpaa.2005.07.010 |
Reference:
|
[7] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289 |
Reference:
|
[8] Kasch, F.: Modules and Rings.London Math. Soc. Monogr. Academic press, London (1981). Zbl 0527.16001, MR 0667346 |
Reference:
|
[9] Lam, T. Y.: Lecture on Modules and Rings.Springer Verlag, New York (1999). MR 1653294 |
Reference:
|
[10] Yang, X., Liu, Z.: Gorenstein projective, injective and flat modules.J. Aust. Math. Soc 87 (2009), 395-407. MR 2576573, 10.1017/S1446788709000093 |
Reference:
|
[11] Osborne, M. S.: Basic Homological Algebra.Graduate Texts in Mathematics, Springer, New York, Berlin (2000). Zbl 0948.18001, MR 1757274 |
Reference:
|
[12] Park, S., Pusan, E. C.: Injective and projective properties of $R[x]$-modules.Czech. Math. J. 54 (2004), 573-578. MR 2086717, 10.1007/s10587-004-6409-5 |
Reference:
|
[13] Rotman, J. J.: An Introductions to Homological Algebra.Academic Press, New York (1979). MR 0538169 |
Reference:
|
[14] Sazeedeh, R.: Strongly torsion free, copure flat and Matlis reflexive modules.J. Pure Appl. Algebra 192 (2004), 265-274. Zbl 1087.13004, MR 2067199, 10.1016/j.jpaa.2004.01.010 |
Reference:
|
[15] Trlifaj, J.: Ext and inverse limits.Illinois J. Math. 47 (2003), 529-538. Zbl 1035.16006, MR 2031338, 10.1215/ijm/1258488170 |
. |