Previous |  Up |  Next

Article

Title: Asymptotics for large time of solutions to nonlinear system associated with the penetration of a magnetic field into a substance (English)
Author: Jangveladze, Temur A.
Author: Kiguradze, Zurab V.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 6
Year: 2010
Pages: 471-493
Summary lang: English
.
Category: math
.
Summary: The nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is considered. The asymptotic behavior as $t\to \infty $ of solutions for two initial-boundary value problems are studied. The problem with non-zero conditions on one side of the lateral boundary is discussed. The problem with homogeneous boundary conditions is studied too. The rates of convergence are given. Results presented show the difference between stabilization characters of solutions of these two cases. (English)
Keyword: system of nonlinear integro-differential equations
Keyword: magnetic field
Keyword: asymptotics for large time
MSC: 35B40
MSC: 35K51
MSC: 35K55
MSC: 35Q61
MSC: 45K05
MSC: 74H40
MSC: 78A30
idZBL: Zbl 1224.35189
idMR: MR2737715
DOI: 10.1007/s10492-010-0019-3
.
Date available: 2010-11-24T08:20:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140822
.
Reference: [1] Amadori, A. L., Karlsen, K. H., Chioma, C. La: Non-linear degenerate integro-partial differential evolution equations related to geometric Lévy processes and applications to backward stochastic differential equations.Stochastics Stochastics Rep. 76 (2004), 147-177. Zbl 1049.60050, MR 2060349, 10.1080/10451120410001696289
Reference: [2] Chadam, J. M., Yin, H. M.: An iteration procedure for a class of integrodifferential equations of parabolic type.J. Integral Equations Appl. 2 (1990), 31-47. Zbl 0701.45004, MR 1033202, 10.1216/JIE-1989-2-1-31
Reference: [3] Coleman, B. D., Gurtin, M. E.: On the stability against shear waves of steady flows of non-linear viscoelastic fluids.J. Fluid Mech. 33 (1968), 165-181. Zbl 0207.25302, 10.1017/S0022112068002430
Reference: [4] Dafermos, C. M.: An abstract Volterra equation with application to linear viscoelasticity.J. Differ. Equations 7 (1970), 554-569. MR 0259670, 10.1016/0022-0396(70)90101-4
Reference: [5] Dafermos, C.: Stabilizing effects of dissipation.Proc. Int. Conf. Equadiff 82, Würzburg 1982. Lect. Notes Math. Vol. 1017 (1983), 140-147. Zbl 0547.35014, MR 0726578, 10.1007/BFb0103245
Reference: [6] Dafermos, C. M., Nohel, J. A.: A nonlinear hyperbolic Volterra equation in viscoelasticity. Contributions to analysis and geometry.Suppl. Am. J. Math. (1981), 87-116. MR 0648457
Reference: [7] Engler, H.: Global smooth solutions for a class of parabolic integrodifferential equations.Trans. Am. Math. Soc. 348 (1996), 267-290. Zbl 0848.45002, MR 1321573, 10.1090/S0002-9947-96-01472-9
Reference: [8] Engler, H.: On some parabolic integro-differential equations: Existence and asymptotics of solutions.Proc. Int. Conf. Equadiff 82, Würzburg 1982. Lect. Notes Math. Vol. 1017 (1983), 161-167. Zbl 0539.35074, MR 0726581, 10.1007/BFb0103248
Reference: [9] Gordeziani, D. G., (Dzhangveladze), T. A. Jangveladze, Korshiya, T. K.: Existence and uniqueness of the solution of certain nonlinear parabolic problems.Differ. Equations 19 (1983), 887-895. MR 0708616
Reference: [10] Gripenberg, G.: Global existence of solutions of Volterra integrodifferential equations of parabolic type.J. Differ. Equations 102 (1993), 382-390. Zbl 0780.45012, MR 1216735, 10.1006/jdeq.1993.1035
Reference: [11] Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications, Vol. 34.Cambridge University Press Cambridge (1990). MR 1050319
Reference: [12] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds.Arch. Ration. Mech. Anal. 31 (1968), 113-126. Zbl 0164.12901, MR 1553521, 10.1007/BF00281373
Reference: [13] (Dzhangveladze), T. A. Jangvelazde: On the solvability of the first boundary value problem for a nonlinear integro-differential equation of parabolic type.Soobsch. Akad. Nauk Gruz. SSR 114 (1984), 261-264 Russian. MR 0782476
Reference: [14] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Asymptotic behavior of the solution of a nonlinear integro-differential diffusion equation.Differ. Equ. 44 (2008), 538-550. MR 2432866, 10.1134/S0012266108040083
Reference: [15] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Asymptotics of a solution of a nonlinear system of diffusion of a magnetic field into a substance.Sib. Mat. Zh. 47 (2006), 1058-1070 Russian English translation: Sib. Math. J. 47 (2006), 867-878. MR 2266515, 10.1007/s11202-006-0095-5
Reference: [16] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Estimates of the stabilization rate as $t\rightarrow\infty$ of solutions of the nonlinear integro-differential diffusion system.Appl. Math. Inform. Mech. 8 (2003), 1-19. MR 2072736
Reference: [17] (Dzhangvelazde), T. A. Jangveladze, Kiguradze, Z. V.: On the stabilization of solutions of an initial-boundary value problem for a nonlinear integro-differential equation.Differ. Equ. 43 (2007), 854-861 Translation from Differ. Uravn. 43 (2007), 833-840 Russian. MR 2383832, 10.1134/S0012266107060110
Reference: [18] (Dzhangveladze), T. A. Jangveladze, Lyubimov, B. Ya., Korshiya, T. K.: Numerical solution of a class of non-isothermal diffusion problems of an electromagnetic field.Tr. Inst. Prikl. Mat. Im. I. N. Vekua 18 (1986), 5-47 Russian. MR 0897501
Reference: [19] Kačur, J.: Application of Rothe's method to evolution integrodifferential equations.J. Reine Angew. Math. 388 (1988), 73-105. Zbl 0638.65098, MR 0944184
Reference: [20] Landau, L. D., Lifshitz, E. M.: Electrodynamics of Continuous Media.Pergamon Press Oxford-London-New York (1960). Zbl 0122.45002, MR 0121049
Reference: [21] Laptev, G.: Mathematical singularities of a problem on the penetration of a magnetic field into a substance.Zh. Vychisl. Mat. Mat. Fiz. 28 (1988), 1332-1345 Russian English translation: U.S.S.R. Comput. Math. Math. Phys. 28 (1990), 35-45. MR 0967528
Reference: [22] Laptev, G.: Quasilinear parabolic equations which contains in coefficients Volterra's operator.Math. Sbornik 136 (1988), 530-545 Russian English translation: Sbornik Math. 64 (1989), 527-542. MR 0965891
Reference: [23] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non-linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [24] Long, N. T., Dinh, A. P. N.: Nonlinear parabolic problem associated with the penetration of a magnetic field into a substance.Math. Methods Appl. Sci. 16 (1993), 281-295. Zbl 0797.35099, MR 1213185, 10.1002/mma.1670160404
Reference: [25] Long, N. T., Dinh, A. P. N.: Periodic solutions of a nonlinear parabolic equation associated with the penetration of a magnetic field into a substance.Comput. Math. Appl. 30 (1995), 63-78. Zbl 0834.35070, MR 1336663, 10.1016/0898-1221(95)00068-A
Reference: [26] MacCamy, R. C.: An integro-differential equation with application in heat flow.Q. Appl. Math. 35 (1977), 1-19. Zbl 0351.45018, MR 0452184, 10.1090/qam/452184
Reference: [27] Renardy, M., Hrusa, W. J., Nohel, J. A.: Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1987). MR 0919738
Reference: [28] Vishik, M.: Über die Lösbarkeit von Randwertaufgaben für quasilineare parabolische Gleichungen höherer Ordnung (On solvability of the boundary value problems for higher order quasilinear parabolic equations).Mat. Sb. N. Ser. 59 (1962), 289-325 Russian.
Reference: [29] Yin, H. M.: The classical solutions for nonlinear parabolic integrodifferential equations.J. Integral Equations Appl. 1 (1988), 249-263. Zbl 0671.45004, MR 0978743, 10.1216/JIE-1988-1-2-249
.

Files

Files Size Format View
AplMat_55-2010-6_2.pdf 297.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo