Previous |  Up |  Next

Article

Keywords:
homogenization; two-scale convergence; periodic unfolding
Summary:
Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator which satisfies the property and thus simplifies the theory. The properties of two-scale convergence are surveyed.
References:
[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823-836. DOI 10.1137/0521046 | MR 1052874 | Zbl 0698.76106
[3] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). MR 0503330 | Zbl 0404.35001
[4] Casado-Díaz, J.: Two-scale convergence for nonlinear Dirichlet problems in perforated domains. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 249-276. MR 1750830
[5] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335 (2002), 99-104. DOI 10.1016/S1631-073X(02)02429-9 | MR 1921004 | Zbl 1001.49016
[6] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008), 1585-1620. DOI 10.1137/080713148 | MR 2466168 | Zbl 1167.49013
[7] Damlamian, A.: An elementary introduction to periodic unfolding. Proceedings of the Narvic Conference 2004, GAKUTO Internat. Ser. Math. Sci. Appl. 24, Gakkotosho, Tokyo (2006), 119-136. MR 2233174 | Zbl 1204.35038
[8] Franců, J.: On two-scale convergence. Proceeding of the 6th Mathematical Workshop, Faculty of Civil Engineering, Brno University of Technology, Brno, October 18, 2007, CD, 7 pages.
[9] Holmbom, A., Silfver, J., Svanstedt, N., Wellander, N.: On two-scale convergence and related sequential compactness topics. Appl. Math. 51 (2006), 247-262. DOI 10.1007/s10492-006-0014-x | MR 2228665 | Zbl 1164.40304
[10] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[11] Nechvátal, L.: Alternative approach to the two-scale convergence. Appl. Math. (Praha) 49 (2004), 97-110. DOI 10.1023/B:APOM.0000027218.04167.9b | MR 2043076
[12] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
Partner of
EuDML logo