Previous |  Up |  Next

Article

Title: Od Fermatových čísel ke geometrii (Czech)
Title: From the Fermat numbers to geometry (English)
Author: Křížek, Michal
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 46
Issue: 3
Year: 2001
Pages: 179-191
.
Category: math
.
MSC: 11-01
MSC: 11A51
idZBL: Zbl 1053.11002
.
Date available: 2010-12-11T18:29:26Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/141082
.
Reference: [1] Agarwal, R. C., Burrus, C. S.: Fast convolution using Fermat number transforms with applications to digital filtering.IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97. MR 0398650
Reference: [2] Antonjuk, P. N., Stanjukovič, K. P.: The logistic difference equation. Period doublings and Fermat numbers.(Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292. MR 1080023
Reference: [3] Biermann, K.-R.: Thomas Clausen, Mathematiker und Astronom.J. Reine Angew. Math. 216 (1964), 159–198. Zbl 0127.00504, MR 0164862
Reference: [4] Chang, C. C.: An ordered minimal perfect hashing scheme based upon Euler’s theorem.Inform. Sci. 32 (1984), 165–172. Zbl 0567.68037, MR 0749147
Reference: [5] Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series.Math. Comp. 19 (1965), 297–301. Zbl 0127.09002, MR 0178586
Reference: [6] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite.Math. Comp., submitted (1999), 1–21.
Reference: [7] Creutzburg, R., Grundmann, H.-J.: Fast digital convolution via Fermat number transform.(German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46. MR 0805051
Reference: [8] Feigenbaum, M. J.: Quantitative universality for a class of nonlinear transformations.J. Stat. Phys. 19 (1978), 25–52. Zbl 0509.58037, MR 0501179
Reference: [9] Hewgill, D.: A relationship between Pascal’s triangle and Fermat’s numbers.Fibonacci Quart. 15 (1977), 183–184. MR 0437343
Reference: [10] Gauss, C. F.: Disquisitiones arithmeticae.(přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986.
Reference: [11] Jones, R., Pearce, J.: A postmodern view of fractions and the reciprocals of Fermat primes.Math. Mag. 73 (2000), 83–97. MR 1822751
Reference: [12] Křížek, M.: O Fermatových číslech.PMFA 40 (1995), 243–253. MR 1386144
Reference: [13] Křížek, M., Křížek, P.: Kouzelný dvanáctistěn pětiúhelníkový.Rozhledy mat.-fyz. 74 (1997), 234–238.
Reference: [14] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry.Springer-Verlag, New York 2001. MR 1866957
Reference: [15] Landry, F.: Sur la décomposition du nombre ${2^{64}+1}$.C. R. Acad. Sci. Paris 91 (1880), 138.
Reference: [16] Lucas, E.: Théorèmes d’arithmétique.Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284.
Reference: [17] Pierpont, J.: On an undemostrated theorem of the Disquisitiones Arithmeticæ.Bull. Amer. Math. Soc. 2 (1895/96), 77–83. MR 1557414
Reference: [18] Reed, I. S., Truong, T. K., Welch, L. R.: The fast decoding of Reed-Solomon codes using Fermat transforms.IEEE Trans. Inform. Theory 24 (1978), 497–499. Zbl 0385.94016, MR 0504337
Reference: [19] Ripley, B. D.: Stochastic simulations.John Wiley & Sons, New York 1987. MR 0875224
Reference: [20] Rosen, M.: Abel’s theorem on the lemniscate.Amer. Math. Monthly 88 (1981), 387–395. Zbl 0491.14023, MR 0622954
Reference: [21] Schönhage, A., Strassen, V.: Fast multiplication of large numbers.(German). Computing 7 (1971), 281–292.
Reference: [22] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas.J. Math. 2 (1837), 366–372.
Reference: [23] : .http://www.prothsearch.net/fermat.html
.

Files

Files Size Format View
PokrokyMFA_46-2001-3_2.pdf 481.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo