Previous |  Up |  Next

Article

Title: Choquetova teorie kapacit (Czech)
Title: Choquet capacity theory (English)
Author: Lukeš, Jaroslav
Author: Netuka, Ivan
Author: Veselý, Jiří
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 47
Issue: 4
Year: 2002
Pages: 265-279
.
Category: math
.
MSC: 01Axx
MSC: 28A12
MSC: 31B15
idZBL: Zbl 1049.31006
.
Date available: 2010-12-11T19:31:52Z
Last updated: 2012-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/141141
.
Reference: [1] Adams, D. R.: Choquet integrals in potential theory.Publ. Mat. (1) 42 (1998), 3–66. Zbl 0923.31006, MR 1628134
Reference: [2] Adams, D. R., Hedberg, L. I.: Function spaces and potential theory.SpringerV̄erlag, Berlin 1999. MR 1411441
Reference: [3] Aikawa, H., Essén, M.: Potential Theory — selected topics.Lecture Notes in Math. 1633, SpringerV̄erlag, Berlin 1996. MR 1439503
Reference: [4] Anger, B.: Approximation of capacities by measures.In: Lecture Notes in Math. 226, Springer-Verlag, Berlin 1971, 152–170. MR 0396885
Reference: [5] Anger, B.: Representation of capacities.Math. Ann. 229 (1977), 245–258. Zbl 0339.31010, MR 0466588
Reference: [6] Armitage, D. H., Gardiner, S. J.: Classical potential theory.Springer-Verlag, London 2001. Zbl 0972.31001, MR 1801253
Reference: [7] Arsove, M. G.: The Wiener-Dirichlet problem and the theorem of Evans.Math. Z. 103 (1968), 184–194. Zbl 0168.09503, MR 0220957
Reference: [8] Bliedtner, J., Hansen, W.: Potential theory — An analytic and probabilistic approach to balayage.Springer-Verlag, Berlin 1986. Zbl 0706.31001, MR 0850715
Reference: [9] Carleson, L.: Lectures on exceptional sets.Van Nostrand, Princeton 1967. MR 0225986
Reference: [10] Dellacherie, C.: Capacités, rabotages et ensembles analytiques.Séminaire Choquet, G., Rogalski, M., Saint-Raymond, J., 19e année, Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie 41, Univ. Paris VI, Paris 1980. Zbl 0504.28002, MR 0670775
Reference: [11] Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel.Chapitres I à IV, Hermann, Paris 1975. Zbl 0323.60039, MR 0488194
Reference: [12] Denneberg, D.: Non-additive measure and integral.Kluwer Academic Publishers Group, Dordrecht 1994. Zbl 0826.28002, MR 1320048
Reference: [13] Doob, J. L.: Classical potential theory and its probabilistic counterpart.SpringerV̄erlag, New York 1984. Zbl 0549.31001, MR 0731258
Reference: [14] Fan, S. C.: Integration with respect to an upper measure function.Amer. J. Math. 63 (1941), 319–338. Zbl 0025.03401, MR 0003703
Reference: [15] Fuglede, B.: Capacity as a sublinear functional generalizing an integral.Danske Vid. Selsk. Mat.-Fys. Medd. (7) 38 (1971). Zbl 0222.31002, MR 0291488
Reference: [16] Helms, L. L.: Introduction to potential theory.Wiley-Interscience, New York – London –– Sydney 1969. Zbl 0188.17203, MR 0261018
Reference: [17] Choquet, G.: Theory of capacities.Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295. MR 0080760
Reference: [18] Choquet, G.: Lectures on analysis I–III.W. A. Benjamin, Inc., New York–Amsterdam 1969.
Reference: [19] Choquet, G.: Vznik teorie kapacit: zamyšlení nad vlastní zkušeností.Pokroky Mat. Fyz. Astronom. 34 (1989), 71–83.
Reference: [20] König, H.: Measure and integration. An advanced course in basic procedures and applications.Springer-Verlag, Berlin 1997. MR 1633615
Reference: [21] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu II., III., IV.SPN, Praha 1972, 1976, 1977.
Reference: [22] Kuratowski, K.: Topology I.Academic Press, New York 1966. MR 0217751
Reference: [23] Lorentz, G. G.: Who discovered analytic sets?.Math. Inteligencer (4) 23 (2001), 28–32. MR 1858643
Reference: [24] Lukeš, J.: Lebesgueův integrál.Časopis Pěst. Mat. (4) 91 (1966), 371–383.
Reference: [25] Lukeš, J., Malý, J.: Measure and integral.Matfyzpress, Praha 1995.
Reference: [26] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory.Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986.
Reference: [27] Meyer, P.-A.: Probabilités et potentiel.Hermann, Paris 1966. Zbl 0138.10402, MR 0205287
Reference: [28] Port, S. C., Stone, C. J.: Brownian motion and classical potential theory.Academic Press, New York 1978. Zbl 0413.60067, MR 0492329
Reference: [29] Rao, M. M.: Measure theory and integration.Wiley-Interscience, New York 1987. Zbl 0619.28001, MR 0891879
Reference: [30] Sedlák, B., Štoll, I.: Elektřina a magnetismus.Academia, Praha 2002.
Reference: [31] Wermer, J.: Potential theory.Lecture Notes in Math. 408, Springer-Verlag, Berlin 1974. Zbl 0297.31001, MR 0454033
Reference: [32] Wiener, N.: Certain notions in potential theory.J. Math. Phys. M. I. T. 3 (1924), 24–51.
.

Files

Files Size Format View
PokrokyMFA_47-2002-4_1.pdf 331.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo