Previous |  Up |  Next

Article

Title: 200 let metody nejmenších čtverců (Czech)
Title: 200 years of least square method (English)
Author: Abdulle, Assyr
Author: Wanner, Gerhard
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 48
Issue: 2
Year: 2003
Pages: 89-104
.
Category: math
.
MSC: 01A55
MSC: 01A60
MSC: 65-03
idZBL: Zbl 1055.01501
Note: Z Elemente der Mathematik 57 (2002), 45–60, přeložila N. Stehlíková. (Czech)
Note: From Elemente der Mathematik 57 (2002), 45–60, translated by N. Stehlíková. (English)
.
Date available: 2010-12-11T19:47:09Z
Last updated: 2012-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/141166
.
Reference: [1] Björck, A.: Numerical methods for least squares problems.408 str., SIAM 1996. MR 1386889
Reference: [2] Bühler, W. K.: GAUSS, eine biographische Studie.Springer Verlag, 1987. MR 0967076
Reference: [3] Collins II, G. W.: The Foundation of celestial mechanics.Astronomy and Astrophysics Series, vol. 16, Pachart Publishing House, Tuscon 1989.
Reference: [4] Danjon, A.: Astronomie genérale.Albert Blanchard, Paris, Seconde éd., 1986.
Reference: [5] Deuflhard, P.: Newton methods for nonlinear problems. Affine invariance and adaptive algorithms.V tisku, Springer Verlag 2002. MR 2063044
Reference: [6] Field, J. V.: Rediscovering the Archimedean polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler.Arch. History Exact Sc. 50 (1996), 241–289. MR 1457069
Reference: [7] Funk, M., Minor, H.-E.: Eislawinen in den Alpen: Erfahrungen mit Schutzmassnahmen und Früherkennungsmethoden.Wasserwirtschaft vol. 91 (2001), 362–368.
Reference: [8] Gauss, C. F.: Summarische Übersicht der zur Bestimmung der Bahnen der beiden neuen Hauptplaneten angewandten Methoden.Monatliche Correspondenz, hearusgeg. Freiherr von Zach, Sept. 1809, Werke, vol. 6, 148–165.
Reference: [9] Gauss, C. F.: Theoria motus corporum coelestium.Perthes et Besser, Hamburgi (1809), Werke vol. 7, 1–288.
Reference: [10] Gauss, C. F.: Theoria combinationis observationum erronibus minimis obnoxiae.Pars Prior et Pars Post., Comm. Soc. Reg. Scient. Gott. 5 (1823), Werke, vol. 4, 1–26, 27–53; Supplementum Comm. Soc. Reg. Scient. Gott. 6 (1828), Werke, vol. 4, 55–93.
Reference: [11] Gauss, C. F.: Elliptische Bahnbestimmung.Aus Gauss’ Nachlass, Werke, vol. 11, 221–252.
Reference: [12] Goldstine, H. H.: A history of numerical analysis from the 16th through the 19th century.Springer Verlag, 1977. Zbl 0402.01005, MR 0484905
Reference: [13] Letze, O., Buchsteiner, T.: Leonardo da Vinci, scientist inventor artist.Exhibition Catalog 1999, Verlag Gerd Hajte, Ostfildern-Ruit, Germany.
Reference: [14] Pearson, K.: On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Phil. Mag. (5) 50 (1900), 157–175; corr. Phil. Mag. (6) 1 (1901), 670–671.
Reference: [15] Plackett, R. L.: Studies in the history of probability and statistics. XXIX, The discovery of the method of least squares.Biometrika 59 (1972), 239–251. MR 0326871
Reference: [16] Stewart, G. W.: Gauss, Theory of the combination of observations least subject to errors.Bilingual edition of [10] with an Afterword, Classics in Appl. Math., SIAM 1995. MR 1329543
Reference: [17] Stigler, S. M.: Gauss and the invention of least squares.The Annals of Stat. 9 (1981), 465–474. Zbl 0477.62001, MR 0615423
Reference: [18] Teets, D., Whitehead, K.: The discovery of Ceres: How Gauss became famous.Math. Magazine 72 (1999), 83–93. Zbl 1005.01007, MR 1701711
Reference: [19] Zach, F. X. von: Fortgesetzte Nachrichten über den längst vermutheten neuen HauptP̄laneten unseres Sonnen-Systems.In Gauss Werke, vol. 6, 199–204.
.

Files

Files Size Format View
PokrokyMFA_48-2003-2_1.pdf 614.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo