Previous |  Up |  Next

Article

Keywords:
Fibonacci number; Lucas number
References:
[1] André-Jeannin, R.: Irrationalité de la somme des inverses de certaines suites récurrentes. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 539–541. MR 0999451
[2] Badea, C.: The irrationality of certain infinite series. Glasgow Math. J. 29 (1987), 221–228. DOI 10.1017/S0017089500006868 | MR 0901668 | Zbl 0629.10027
[3] Brown, J. L.: Zeckendorf’s theorem and some applications. Fibonacci Quart. 2 (1964), 163–168. Zbl 0127.27301
[4] Brousseau, A.: Tables of Fibonacci entry points (Parts One and Two). The Fibonacci Association 1965.
[5] Bugeaud, Y., Mignotte, M., Siksek, S.: Sur les nombres de Fibonacci de la forme $q^ky^p$. C. R. Math. Acad. Sci. Paris 339 (2004), 327–330. DOI 10.1016/j.crma.2004.06.007 | MR 2092057 | Zbl 1113.11010
[6] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential diophantine equations, I. Fibonacci and Lucas perfect powers. Submitted to Ann. of Math. (2004).
[7] Calda, E.: Fibonacciova čísla a Pascalův trojúhelník. Rozhledy mat.-fyz. 71 (1993/94), 15–19.
[8] Carmichael, R. D.: On the numerical factors of the arithmetic forms ${\alpha ^n\pm \beta ^n}$. Ann. Math. 15 (1913), No. 2, 30–70. MR 1502458
[9] Drobot, V.: On primes in the Fibonacci sequence. Fibonacci Quart. 38 (2000), 71–72. MR 1738649 | Zbl 0942.11016
[10] Dujella, A.: A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127 (1999), 1999–2005. DOI 10.1090/S0002-9939-99-04875-3 | MR 1605956 | Zbl 0937.11011
[11] Duverney, D.: Irrationalité de la somme des inverses de la suite de Fibonacci. Elem. Math. 52 (1997), 31–36. DOI 10.1007/s000170050008 | MR 1438856 | Zbl 0886.11041
[12] Erdős, P., Graham, R. L.: Old and new problems and results in combinatorial number theory. Monographie 28 de L’Enseign. Math., Imprimerie Kundig, Genéve 1980. MR 0592420
[13] Good, I. J.: A reciprocal series of Fibonacci numbers. Fibonacci Quart. 12 (1974), 346. MR 0351977 | Zbl 0292.10009
[14] Halton, J. H.: On Fibonacci residues. Fibonacci Quart. 2 (1964), 217–218. Zbl 0119.27905
[15] Henrici, P.: Discrete variable methods in ordinary differential equations. John Wiley & Sons, New York 1962. MR 0135729 | Zbl 0112.34901
[16] Hogben, L.: An introduction to mathematical genetics. Norton, New York 1946. MR 0019906
[17] Hoggatt, V. E.: Fibonacci and Lucas numbers. Houghton Mifflin Company, Boston 1969. Zbl 0198.36903
[18] Jarden, D.: Recurring sequences: a collection of papers. Riveon Lematematika, Jerusalem 1973. MR 0197383
[19] Jones, J. P.: Diophantine representation of the Fibonacci numbers. Fibonacci Quart. 13 (1975), 84–88. MR 0382147 | Zbl 0301.10010
[20] Jones, J. P., Matiyasevich, Y. V.: Proof of recursive unsolvability of Hilbert’s tenth problem. Amer. Math. Monthly 98 (1991), 689–709. DOI 10.2307/2324421 | MR 1130680 | Zbl 0746.03006
[21] Koshy, T.: Fibonacci and Lucas numbers with applications. John Wiley & Sons, Inc., New York 2001. MR 1855020 | Zbl 0984.11010
[22] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers. Springer-Verlag, New York 2001. MR 1866957 | Zbl 1010.11002
[23] Křížek, M., Šolcová, A.: Jak spolu souvisí chaos, fraktály a teorie čísel. Sborník semináře Determinismus a chaos, Herbertov 2005, FS ČVUT, Praha 2005, 96–113.
[24] Lagarias, J. C.: The set of primes dividing the Lucas numbers has density $2/3$. Pacific J. Math. 118 (1985), 449–461. Errata ibid. 162 (1994), 393–396. MR 0789184 | Zbl 0569.10003
[25] Lind, D. A.: The quadratic field ${\mathbb Q}[\sqrt{5}]$ and a certain diophantine equation. Fibonacci Quart. 6 (1968), 86–93. MR 0231784
[26] Ljunggren, W.: On the diophantine equation ${x^2+4=Ay^2}$. Det. Kgl. Norske Vid.S̄elsk. Forh. 24 (1951), 82–84. MR 0049214
[27] London, H., Finkelstein, R.: On Fibonacci and Lucas numbers which are perfect powers. Fibonacci Quart. 7 (1969), 476–481, 487. Errata ibid. 8 (1970), 248. MR 0255482 | Zbl 0206.05402
[28] Luca, F.: Proposed problem H-596. Advanced Problem Section, Fibonacci Quart. 41 (2003), 187.
[29] Luca, F.: Palindromes in Lucas sequences. Monatsh. Math. 138 (2003), 209–223. DOI 10.1007/s00605-002-0490-3 | MR 1969517 | Zbl 1027.11012
[30] Luca, F.: Products of factorials in binary recurrence sequences. Rocky Mountain J. Math. 29 (1999), 1387–1411. DOI 10.1216/rmjm/1181070412 | MR 1743376 | Zbl 0978.11010
[31] Luo, M.: On triangular Fibonacci numbers. Fibonacci Quart. 27 (1989), 98–108. MR 0995557
[32] Matiyasevich, Y.: Enumerable sets are diophantine. Soviet Math. Dokl. 11 (1970), 354–358. Zbl 0212.33401
[33] Matiyasevich, Y.: My collaboration with Julia Robinson. Math. Intell. 14 (1992), no. 4, 38–45. DOI 10.1007/BF03024472 | MR 1188142 | Zbl 0770.01005
[34] Matiyasevich, Y. V., Guy, R. K.: A new formula for $\pi $. Amer. Math. Monthly 93 (1986), 631–635. MR 1712797 | Zbl 0614.10003
[35] McDaniel, W.: On Fibonacci and Pell numbers of the form $kx^2$. Fibonacci Quart. 40 (2002), 41–42. MR 1885268 | Zbl 1068.11010
[36] McLaughlin, J.: Small prime powers in the Fibonacci sequence. Preprint, Univ. of Illinois 2002.
[37] Nemes, I., Pethő, A.: Polynomial values in linear recurrences, II. J. Number Theory 24 (1986), 47–53. MR 0852189
[38] Pisano, L.: Fibonacci’s Liber abaci. A translation into modern English of Leonardo Pisano’s Book of calculation. Translated by L. E. Sigler, Springer, New York 2002. MR 1923794 | Zbl 1032.01046
[39] Schroeder, M. R.: Number theory in science and communication. Springer Series in Information Sci. 7, second edition, Springer, Berlin 1986. MR 0827496 | Zbl 0613.10001
[40] Stewart, C. L.: On the representation of an integer in two different bases. J. Reine Angew. Math. 319 (1980), 63–72. MR 0586115 | Zbl 0426.10008
[41] Vajda, S.: Fibonacci & Lucas numbers, and the golden section: Theory and applications. John Wiley & Sons, New York 1989. MR 1015938 | Zbl 0695.10001
[42] Vorobiev, N. N.: Fibonacci numbers. Birkhäuser, Basel 2002; Nauka, Moskva 1992. MR 1954396 | Zbl 1014.11012
[43] Wall, D. D.: Fibonacci series modulo $m$. Amer. Math. Monthly 67 (1960), 525–532. DOI 10.2307/2309169 | MR 0120188 | Zbl 0101.03201
[44] Williams, H. C.: A note on the Fibonacci quotients $F_{p-\epsilon }/p$. Canad. Math. Bull. 25 (1982), 366–370. DOI 10.4153/CMB-1982-053-0 | MR 0668957
[45] Zhu, Z., Cao, L., Liu, X., Zhu, W.: Topological invariance of the Fibonacci sequences of the periodic buds in general Mandelbrot sets. J. Northeast Univ. Na. Sci. 22 (2001), 497–500. MR 1869910
Partner of
EuDML logo