Previous |  Up |  Next

Article

Keywords:
generalized $R$-Latin square; finite projective plane
References:
[1] Albert, A. A.: Quasigroups I, II. Trans. Amer. Math. Soc. 54 (1943), 507–519; 55 (1944), 401–419. DOI 10.1090/S0002-9947-1943-0009962-7 | MR 0009962
[2] Belousov, V. D.: Osnovy teorii kvazigrup i lup. Izd. Nauka, Moskva 1967. MR 0218483
[3] Bosák, J.: Latinské štvorce. Škola mladých matematiků, sv. 38, Praha 1976.
[4] Bose, R. C.: On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares. Sankya 3 (1938), 323–338.
[5] Bose, R. C., Parker, E. T., Shrikhande, S. S.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. Math. J. 12 (1960), 189–203. DOI 10.4153/CJM-1960-016-5 | MR 0122729 | Zbl 0093.31905
[6] Bruck, R. H., Ryser, H. J.: On the non-existence of certain finite projective planes. Canad. Math. J. 1 (1949), 88–93. DOI 10.4153/CJM-1949-009-2 | MR 0027520
[7] Dembowski, P.: Finite geometries. Springer, Berlin 1968. MR 0233275 | Zbl 0159.50001
[8] Dénes, J., Keedwell, A. D.: Latin squares and their applications. Akadémiai Kiadó, Budapest, Academic Press, London 1974. MR 0351850
[9] Deng, Bo: Why is the number of DNA bases 4?. Bull. Math. Biol. 68 (2006), 727–733. DOI 10.1007/s11538-005-9019-y | MR 2224788
[10] Euler, L.: Recherches sur une nouvelle espèce de quarrés magiques. Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen 9 (1782), 85–239.
[11] Fisher, R. A.: The design of experiments. (8th edition). Olivier et Boyd, Edinburgh 1966.
[12] Hall, M.: Combinatorial theory. Blaisdell Publ. Comp., Toronto, London 1967. MR 0224481 | Zbl 0196.02401
[13] Harary, F.: Graph theory. Addison-Wesley, Reading Mass 1969. MR 0256911 | Zbl 0196.27202
[14] Herzberg, A. L., Murty, M. R.: Sudoku squares and chromatic polynomials. Notices Amer. Math. Soc. 54 (2007), 708–717. MR 2327972 | Zbl 1177.05022
[15] Kárná, L.: Genetic code from the point of view of code theory. Proc. ICPM ’05, Liberec 2005, 267–273.
[16] Katrnoška, F.: Logics that are generated by idempotents. Lobachevskii J. Math. 15 (2004), 11–19. MR 2120697 | Zbl 1060.15018
[17] Katrnoška, F.: On algebras of generalized $R$-Latin squares. Připraveno pro tisk.
[18] Katrnoška, F., Křížek, M.: Genetický kód a teorie monoidů aneb 50 let od objevu struktury DNA. PMFA 48 (2003), 207–222.
[19] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry. Springer, New York 2001. MR 1866957 | Zbl 1010.11002
[20] Lam, C. W. H.: The search for a finite projective plane of order 10. Amer. Math. Monthly 98 (1991), 305–318. DOI 10.2307/2323798 | MR 1103185 | Zbl 0744.51011
[21] Laugwitz, D.: Eulerovy čtverce. PMFA 25 (1980), 69–79.
[22] Laywine, Ch., Mullen, G. L.: Discrete mathematics using Latin squares. Wiley Interscience 1998. MR 1644242 | Zbl 0957.05002
[23] Mann, H. B.: The construction of orthogonal Latin squares. Ann. Math. Stat. 13 (1942), 418–423. DOI 10.1214/aoms/1177731539 | MR 0007736 | Zbl 0060.02706
[24] Markus, M.: Introduction to modern algebra. Marcel Dekker, New York, Basel 1978. MR 0492268
[25] Matoušek, J., Nešetřil, J.: Kapitoly z diskrétní matematiky. Karolinum, Praha 2000.
[26] Moufang, R.: Zur Struktur von alternativ Körpern. Math. Ann. 110 (1935), 416–430. DOI 10.1007/BF01448037 | MR 1512948
[27] Ozanam, J.: Récréations mathématiques et physiques 1723. (angl. vyd. 1814, Hutton).
[28] Rybnikov, K. A.: Vveděnije v kombinatornyj analiz. Izd. Moskovskogo Univ., Moskva 1985. MR 0812275
[29] Tarry, G.: Le problème des 36 officiers. C. R. Assoc. Fr. Av. Sci. 1 (1900), 122–123; 2 (1901), 170–203.
[30] Thompson, J. S., Thompson, M. W.: Genetics in medicine. W. B. Saunders Company, Philadelphia 2001.
[31] Veblen, O.: A system of axioms for geometry. Trans. Amer. Math. Soc. 5 (1904), 343–384. DOI 10.1090/S0002-9947-1904-1500678-X | MR 1500678
[32] Watson, J. D.: Molekulární biologie genu. Academia, Praha 1982.
[33] Wilson, R. J.: Introduction to graph theory. Oliver and Boyd, Edinburgh 1972. MR 0357175 | Zbl 0249.05101
Partner of
EuDML logo