Previous |  Up |  Next

Article

Keywords:
frames (locales); localic maps; approximation; Kleisli representation
Summary:
A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting.
References:
[1] Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames. Quaestiones Math. 19 (1–2) (1996), 101–127. DOI 10.1080/16073606.1996.9631828 | MR 1390475 | Zbl 0861.54023
[2] Banaschewski, B., Pultr, A.: A general view of approximation. Appl. Categ. Structures 14 (2006), 165–190. DOI 10.1007/s10485-006-9013-z | MR 2247451 | Zbl 1113.54013
[3] Carathéodory, C.: Über die Begrenzung einfach zusamenhängender Gebiete. Math. Ann. 73 (3) (1913), 323–370. DOI 10.1007/BF01456699 | MR 1511737
[4] Escardó, M. Hötzel: Injective spaces in the filter monad. Department of Computing, Edinburg University, preprint 1997.
[5] Grothendieck, A.: Éléments de géométrie algebrique. I. Le langage des schémas. no. 4, Inst. Hautes Études Sci. Publ. Math., 1960. MR 0217083 | Zbl 0118.36206
[6] Hausdorff, F.: Grundzüge der Mengenlehre. Veit & Co., Leipzig, 1914. MR 0031025
[7] Johnstone, P. T.: Stone spaces. Cambridge Stud. Adv. Math. 3, 1982. MR 0698074 | Zbl 0499.54001
[8] Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51 (309) (1984), 71 pp. MR 0756176 | Zbl 0541.18002
[9] Kelley, J. L.: General Topology. D. Van Nostrand Company, Inc., Toronto–New York–London, 1955. MR 0070144 | Zbl 0066.16604
[10] Lane, S. Mac: Categories for the Working Mathematician. Springer–Verlag, New York, 1971. MR 1712872
[11] Manes, E.: Algebraic Theories. Grad. Texts in Math. 26 (1976), 356 pp. MR 0419557 | Zbl 0353.18007
[12] Picado, J., Pultr, A.: Sublocale sets and sublocale lattices. Arch. Math. (Brno) 42 (4) (2006), 409–418. MR 2283021 | Zbl 1164.06313
[13] Picado, J., Pultr, A.: Locales treated mostly in a covariant way. vol. 41, Textos Mat. Ser. B, 2008. MR 2459570 | Zbl 1154.06007
[14] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 324 (1972), 507–530. MR 0300949 | Zbl 0323.06011
[15] Pultr, A.: Handbook of Algebra. vol. 3, ch. Frames, pp. 791–858, Elsevier, 2003. MR 2035108
Partner of
EuDML logo