Previous |  Up |  Next

Article

Title: The interface crack with Coulomb friction between two bonded dissimilar elastic media (English)
Author: Itou, Hiromichi
Author: Kovtunenko, Victor A.
Author: Tani, Atusi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 69-97
Summary lang: English
.
Category: math
.
Summary: We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip. (English)
Keyword: linearized elasticity
Keyword: singularities at the crack tip
Keyword: interfacial crack
Keyword: non-penetration condition
Keyword: Coulomb friction
MSC: 35B65
MSC: 35C20
MSC: 35D30
MSC: 35J57
MSC: 35J65
MSC: 35Q74
MSC: 49J40
MSC: 74B05
MSC: 74M10
idZBL: Zbl 1224.35054
idMR: MR2807427
DOI: 10.1007/s10492-011-0010-7
.
Date available: 2011-01-03T14:51:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141407
.
Reference: [1] Andersson, L.-E.: Existence results for quasistatic contact problems with Coulomb friction.Appl. Math. Optim. 42 (2000), 169-202. Zbl 0972.35058, MR 1784173, 10.1007/s002450010009
Reference: [2] Audoly, B.: Asymptotic study of the interfacial crack with friction.J. Mech. Phys. Solids 48 (2000), 1851-1864. Zbl 0963.74048, 10.1016/S0022-5096(99)00098-8
Reference: [3] Bach, M., Khludnev, A. M., Kovtunenko, V. A.: Derivatives of the energy functional for 2D-problems with a crack under Signorini and friction conditions.Math. Methods Appl. Sci. 23 (2000), 515-534. Zbl 0954.35076, MR 1748320, 10.1002/(SICI)1099-1476(200004)23:6<515::AID-MMA122>3.0.CO;2-S
Reference: [4] Bui, H. D., Oueslati, A.: The sliding interface crack with friction between elastic and rigid bodies.J. Mech. Phys. Solids 53 (2005), 1397-1421. Zbl 1120.74744, MR 2137068, 10.1016/j.jmps.2004.12.007
Reference: [5] Comninou, M.: An overview of interface crack.Eng. Fract. Mech. 37 (1990), 197-208. 10.1016/0013-7944(90)90343-F
Reference: [6] Comninou, M., Dundurs, J.: Effect of friction on the interface crack loaded in shear.J. Elasticity 10 (1980), 203-212. Zbl 0457.73098, MR 0576168, 10.1007/BF00044504
Reference: [7] Dundurs, J., Comninou, M.: Some consequences of the inequality conditions in contact and crack problems.J. Elasticity 9 (1979), 71-82. Zbl 0393.73117, 10.1007/BF00040981
Reference: [8] Eck, Ch., Jarušek, J., Krbec, M.: Unilateral Contact Problems.Chapman&Hall/CRC Boca Raton (2005). Zbl 1079.74003, MR 2128865
Reference: [9] England, A. H.: Complex Variable Methods in Elasticity.John Wiley & Sons London (1971). Zbl 0222.73017, MR 0464824
Reference: [10] Fichera, G.: Existence theorems in elasticity.Mechanics of Solids Vol. II C. Truesdell Springer Berlin (1984), 347-389.
Reference: [11] Haslinger, J., Kučera, J., Vlach, O.: Bifurcations in contact problems with local Coulomb friction.Num. Math. Adv. Appl. K. Kunisch, G. Of, O. Steinbach Springer Berlin (2008), 811-818. Zbl 1155.74032, MR 3615958, 10.1007/978-3-540-69777-0_97
Reference: [12] Hild, P.: Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity.Q. J. Mech. Appl. Math. 57 (2004), 225-235. Zbl 1059.74042, MR 2068404, 10.1093/qjmam/57.2.225
Reference: [13] Hintermüller, M., Kovtunenko, V. A., Kunisch, K.: Obstacle problems with cohesion: A hemi-variational inequality approach and its efficient numerical solution.MATHEON Report 687 DFG-Forschungszentrum, TU-Berlin Berlin (2010). MR 2817476
Reference: [14] Hüeber, S., Stadler, G., Wohlmuth, B. I.: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction.SIAM J. Sci. Comput. 30 (2008), 572-596. Zbl 1158.74045, MR 2385876, 10.1137/060671061
Reference: [15] Ikehata, M., Itou, H.: Reconstruction of a linear crack in an isotropic elastic body from a single set of measured data.Inverse Probl. 23 (2007), 589-607. Zbl 1115.35149, MR 2309665, 10.1088/0266-5611/23/2/008
Reference: [16] Ikehata, M., Itou, H.: Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data. Article ID 105005.Inverse Probl. 25 (2009), 1-21. MR 2545974
Reference: [17] Itou, H., Tani, A.: A boundary value problem for an infinite elastic strip with a semi-infinite crack.J. Elasticity 66 (2002), 193-206. Zbl 1018.74033, MR 1956323, 10.1023/A:1021903404039
Reference: [18] Kato, Y.: Signorini's problem with friction in linear elasticity.Japan J. Appl. Math. 4 (1987), 237-268. Zbl 0627.73098, MR 0899912, 10.1007/BF03167776
Reference: [19] Khludnev, A. M., Kovtunenko, V. A.: Analysis of Cracks in Solids.WIT-Press Southampton, Boston (2000).
Reference: [20] Khludnev, A. M., Kovtunenko, V. A., Tani, A.: Evolution of a crack with kink and non-penetration.J. Math. Soc. Japan 60 (2008), 1219-1253. Zbl 1153.49040, MR 2467876, 10.2969/jmsj/06041219
Reference: [21] Khludnev, A. M., Kovtunenko, V. A., Tani, A.: On the topological derivative due to kink of a crack with non-penetration.J. Math. Pures Appl. 94 (2010), 571-596. Zbl 1203.49035, MR 2737389, 10.1016/j.matpur.2010.06.002
Reference: [22] Khludnev, A. M., Kozlov, V. A.: Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions.Z. Angew. Math. Phys. 59 (2008), 264-280. Zbl 1138.74043, MR 2400558, 10.1007/s00033-007-6032-z
Reference: [23] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.SIAM Philadelphia (1988). Zbl 0685.73002, MR 0961258
Reference: [24] Kovtunenko, V. A.: Crack in a solid under Coulomb friction law.Appl. Math. 45 (2000), 265-290. Zbl 1058.74064, MR 1763172, 10.1023/A:1022319428441
Reference: [25] Kravchuk, A. S.: Variational and Quasivariational Inequations in Mechanics.MGAPI Moscow (1997), Russian.
Reference: [26] Maz'ya, V., Nazarov, S., Plamenevskii, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II.Birkhäuser Basel (2000). Zbl 1127.35301, MR 1779978
Reference: [27] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity.Noordhoff Groningen (1963). Zbl 0124.17404, MR 0176648
Reference: [28] Nečas, J., Jarušek, J., Haslinger, J.: On the solution of the variational inequality to the Signorini problem with small friction.Boll. Unione Mat. Ital. 17-B (1980), 796-811. MR 0580559
Reference: [29] Renard, Y.: A uniqueness criterion for the Signorini problem with Coulomb friction.SIAM J. Math. Anal. 38 (2006), 452-467. Zbl 1194.74225, MR 2237156, 10.1137/050635936
Reference: [30] Rice, J. R.: Elastic fracture mechanics concepts for interfacial cracks.J. Appl. Mech. 55 (1988), 98-103. 10.1115/1.3173668
Reference: [31] Shillor, M., Sofonea, M., Telega, J.: Models and Analysis of Quasistatic Contact.Springer Berlin (2004). Zbl 1069.74001
Reference: [32] Toupin, R. A.: Saint-Venant's principle.Arch. Ration. Mech. Anal. 18 (1965), 83-96. Zbl 0203.26803, MR 0172506, 10.1007/BF00282253
.

Files

Files Size Format View
AplMat_56-2011-1_5.pdf 392.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo