Previous |  Up |  Next

Article

Title: Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions (English)
Author: Novotný, Antonín
Author: Pokorný, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 137-160
Summary lang: English
.
Category: math
.
Summary: We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux. (English)
Keyword: steady compressible Navier-Stokes-Fourier system
Keyword: weak solution
Keyword: entropy inequality
Keyword: Orlicz spaces
Keyword: compensated compactness
Keyword: renormalized solution
MSC: 35A01
MSC: 35D30
MSC: 35Q30
MSC: 35Q35
MSC: 76N10
idZBL: Zbl 1224.76108
idMR: MR2807430
DOI: 10.1007/s10492-011-0013-4
.
Date available: 2011-01-03T14:58:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141410
.
Reference: [1] Erban, R.: On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow.Math. Methods Appl. Sci. 26 (2003), 489-517. Zbl 1061.76073, MR 1965718, 10.1002/mma.362
Reference: [2] Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics.Birkhäuser Basel (2009). MR 2499296
Reference: [3] Frehse, J., Steinhauer, M., Weigant, W.: The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D.Preprint University of Bonn, SFB 611, No. 347 (2007), http://www.iam.uni-bonn.de/sfb611/.
Reference: [4] Frehse, J., Steinhauer, M., Weigant, W.: The Dirichlet problem for viscous compressible isothermal Navier-Stokes equations in two-dimensions.Arch. Ration. Mech. Anal. 198 (2010), 1-12. Zbl 1229.35175, MR 2679367, 10.1007/s00205-010-0338-2
Reference: [5] Kufner, A., John, O., Fučík, S.: Function spaces.Academia Praha (1977). MR 0482102
Reference: [6] Lions, P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, Vol. 10.Clarendon Press Oxford (1998). MR 1637634
Reference: [7] Maligranda, L.: Orlicz Spaces and Interpolation.Univ. Estadual de Campinas Campinas (1989). Zbl 0874.46022, MR 2264389
Reference: [8] Mucha, P. B., Pokorný, M.: On the steady compressible Navier-Stokes-Fourier system.Commun. Math. Phys. 288 (2009), 349-377. Zbl 1172.35467, MR 2491627, 10.1007/s00220-009-0772-x
Reference: [9] Mucha, P. B., Pokorný, M.: Weak solutions to equations of steady compressible heat conducting fluids.Math. Models Methods Appl. Sci. 20 (2010), 785-813. Zbl 1191.35207, MR 2652619, 10.1142/S0218202510004441
Reference: [10] Novotný, A., Pokorný, M.: Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations.J. Differ. Equations Accepted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-021.
Reference: [11] Novotný, A., Pokorný, M.: Weak and variational solutions to steady equations for compressible heat conducting fluids.Submitted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-023.
Reference: [12] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow.Oxford University Press Oxford (2004). Zbl 1088.35051, MR 2084891
Reference: [13] Pecharová, P., Pokorný, M.: Steady compressible Navier-Stokes-Fourier system in two space dimensions.Commentat. Math. Univ. Carol (to appear). MR 2858268
Reference: [14] Plotnikov, P. I., Sokołowski, J.: On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations.J. Math. Fluid Mech. 7 (2005), 529-573. Zbl 1090.35140, MR 2189674, 10.1007/s00021-004-0134-6
Reference: [15] Plotnikov, P. I., Sokołowski, J.: Concentrations of stationary solutions to compressible Navier-Stokes equations.Commun. Math. Phys. 258 (2005), 567-608. MR 2172011, 10.1007/s00220-005-1358-x
Reference: [16] Plotnikov, P. I., Sokołowski, J.: Stationary solutions of Navier-Stokes equations for diatomic gases.Russ. Math. Surv. 62 (2007), 561-593. Zbl 1139.76049, MR 2355421, 10.1070/RM2007v062n03ABEH004414
Reference: [17] Vodák, R.: The problem $\div v=f$ and singular integrals on Orlicz spaces.Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math. 41 (2002), 161-173. MR 1968228
.

Files

Files Size Format View
AplMat_56-2011-1_8.pdf 337.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo