Previous |  Up |  Next

Article

Title: Multivariate statistical models; solvability of basic problems (English)
Author: Kubáček, Lubomír
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 2
Year: 2010
Pages: 53-67
Summary lang: English
.
Category: math
.
Summary: Multivariate models frequently used in many branches of science have relatively large number of different structures. Sometimes the regularity condition which enable us to solve statistical problems are not satisfied and it is reasonable to recognize it in advance. In the paper the model without constraints on parameters is analyzed only, since the greatness of the class of such problems in general is out of the size of the paper. (English)
Keyword: Multivariate model
Keyword: estimation
Keyword: testing hypotheses
Keyword: sensitivity
MSC: 62H12
MSC: 62J05
idZBL: Zbl 1228.62067
idMR: MR2796947
.
Date available: 2011-02-18T07:37:35Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141417
.
Reference: [1] Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. Wiley, New York, 1958. Zbl 0083.14601, MR 0091588
Reference: [2] Fišerová, E., Kubáček, L.: Insensitivity regions for deformation measurement on a dam. Environmetrics 20 (2009), 776–789. MR 2838487, 10.1002/env.994
Reference: [3] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.
Reference: [4] Fišerová, E., Kubáček, L.: Sensitivity analysis in singular mixed linear models with constraints. Kybernetika 39 (2003), 317–332. Zbl 1248.62112, MR 1995736
Reference: [5] Fišerová, E., Kubáček, L.: Statistical problems of measurement in triangle. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Mathematica 15 (2004), 77–94. MR 2159120
Reference: [6] Giri, N. G.: Multivariate Statistical Analysis. Marcel Dekker, New York–Basel, 2004, (second edition).
Reference: [7] Kshirsagar, A. M.: Multivariate Analysis. Marcel Dekker, New York–Basel, 1972. Zbl 0246.62064, MR 0343478
Reference: [8] Kubáček, L.: Statistical models of a priori and a posteriori uncertainty in measured data. In: Proceedings of the MME’95 Symposium, Selected papers of the international symposium, September 18–20, (Eds. Hančlová, J., Dupačová, J., Močkoř, J., Ramík, J.), VŠB–Technical University, Faculty of Economics, Ostrava, 1995, 79–87.
Reference: [9] Kubáček, L.: Criterion for an approximation of variance components in regression models. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 34 (1995), 91–108. MR 1447258
Reference: [10] Kubáček, L.: Linear model with inaccurate variance components. Applications of Mathematics 41 (1996), 433–445. MR 1415250
Reference: [11] Kubáček, L.: On an accuracy of change points. Math. Slovaca 52 (2002), 469–484. Zbl 1014.62022, MR 1940250
Reference: [12] Kubáček, L.: Multivariate Statistical Models Revisited. Vyd. University Palackého, Olomouc, 2008.
Reference: [13] Kubáček, L., Fišerová, E.: Problems of sensitiveness and linearization in a determination of isobestic points. Math. Slovaca 53 (2003), 407–426. Zbl 1070.62057, MR 2025473
Reference: [14] Kubáček, L., Fišerová, E.: Isobestic points: sensitiveness and linearization. Tatra Mt. Math. Publ. 26 (2003), 1–10. Zbl 1065.62118, MR 2055178
Reference: [15] Kubáček, L., Kubáčková, L.: The effect of stochastic relations on the statistical properties of an estimator. Contr. Geophys. Inst. Slov. Acad. Sci. 17 (1987), 31–42.
Reference: [16] Kubáček, L., Kubáčková, L.: Sensitiveness and non-sensitiveness in mixed linear models. Manuscripta Geodaetica 16 (1991), 63–71.
Reference: [17] Kubáček, L., Kubáčková, L.: Unified approach to determining nonsensitiveness regions. Tatra Mt. Math. Publ. 17 (1999), 1–8. MR 1737699
Reference: [18] Kubáček, L., Kubáčková, L.: Nonsensitiveness regions in universal models. Math. Slovaca 50 (2000), 219–240. MR 1763121
Reference: [19] Kubáček, L., Kubáčková, L.: Statistical problems of a determination of isobestic points. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Mathematica 11 (2002), 139–150. Zbl 1046.62067, MR 1994204
Reference: [20] Kubáček, L., Kubáčková, L., Tesaříková, E., Marek, J.: How the design of an experiment influences the nonsensitiveness regions in models with variance components. Application of Mathematics 43 (1998), 439–460. MR 1652104, 10.1023/A:1023269321385
Reference: [21] Kubáčková, L., Kubáček, L.: Optimum estimation in a growth curve model with a priori unknown variance components in geodetic networks. Journal of Geodesy 70 (1996), 599–602.
Reference: [22] Kubáčková, L., Kubáček, L., Bognárová, M.: Effect of the changes of the covariance matrix parameters on the estimates of the first order parameters. Contr. Geophys. Inst. Slov. Acad. Sci. 20 (1990), 7–19.
Reference: [23] Rao, C. R.: Least squares theory using an estimated dispersion matrix and its application to measurement in signal. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol 1., Theory of Statistics, University of California Press, Berkeley–Los Angeles, 1967, 355–372. MR 0212930
Reference: [24] Seber, G.: Multivariate Observations. Wiley, Hoboken, New Jersey, 2004. MR 0746474
.

Files

Files Size Format View
ActaOlom_49-2010-2_5.pdf 280.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo