Previous |  Up |  Next

Article

Title: On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions (English)
Author: Bulíček, Miroslav
Author: Lewandowski, Roger
Author: Málek, Josef
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 89-114
Summary lang: English
.
Category: math
.
Summary: In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity $\nu $ polynomially increasing with a scalar quantity $k$ that evolves according to an evolutionary convection diffusion equation with the right hand side $\nu (k)|{\pmb{\mathsf{D}}}(\vec{v})|^2$ that is merely $L^1$-integrable over space and time. We also formulate a conjecture concerning regularity of such a solution. (English)
Keyword: large data existence
Keyword: suitable weak solution
Keyword: Navier-Stokes-Fourier equations
Keyword: incompressible fluid
Keyword: the viscosity increasing with a scalar quantity
Keyword: regularity
Keyword: turbulent kinetic energy model
MSC: 35Q30
MSC: 35Q35
MSC: 76F60
idZBL: Zbl 1240.35378
idMR: MR2828368
.
Date available: 2011-03-08T17:39:59Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141430
.
Reference: [1] Bernardi C., Chacón Rebollo T., Gómez Mármol M., Lewandowski R., Murat F.: A model for two coupled turbulent fluids, III. Numerical approximation by finite elements.Numer. Math. 98 (2004), no. 1, 33–66. MR 2076053, 10.1007/s00211-003-0490-9
Reference: [2] Bernardi C., Chacón Rebollo T., Hecht F., Lewandowski R.: Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations.Math. Models Methods Appl. Sci. 19 (2009), no. 7, 1139–1183. MR 2553180, 10.1142/S0218202509003747
Reference: [3] Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F.: A model for two coupled turbulent fluids, I. Analysis of the system.Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, pp. 69–102. MR 1935990, 10.1016/S0168-2024(02)80006-6
Reference: [4] Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F.: A model for two coupled turbulent fluids, II. Numerical analysis of a spectral discretization.SIAM J. Numer. Anal. 40 (2002), no. 6, 2368–2394 (electronic) (2003). MR 1974191, 10.1137/S0036142901385829
Reference: [5] Blanke B., Delecluse P.: Variability of the Tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics.J. Phys. Oceanogr. 23 (1993), 1363–1388. 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
Reference: [6] Brossier F., Lewandowski R.: Impact of the variations of the mixing length in a first order turbulent closure system.M2AN Math. Model. Numer. Anal. 36 (2002), no. 2, 345–372. Zbl 1040.35057, MR 1906822, 10.1051/m2an:2002016
Reference: [7] Bulíček M., Málek J., Rajagopal K.R.: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries.SIAM J. Math. Anal.41 (2009), no. 2, 665–707. MR 2515781, 10.1137/07069540X
Reference: [8] Bulíček M., Feireisl E., Málek J.: A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients.Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015. MR 2474275
Reference: [9] Bulíček M., Málek J., Rajagopal K.R.: Navier's slip and evolutionary Navier-Stokes like systems with pressure and shear-rate dependent viscosity.Indiana Univ. Math. J. 56 (2007), 51–85. Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997
Reference: [10] Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. Zbl 0509.35067, MR 0673830, 10.1002/cpa.3160350604
Reference: [11] Chacon T., Pironneau O.: On the mathematical foundations of the $k$-$\epsilon$ turbulent model.Vistas in Applied Mathematics, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986, pp. 44–56. Zbl 0618.76049, MR 0859923
Reference: [12] Chácon Rebollo T.: Oscillations due to the transport of microstructures.SIAM J. Appl. Math. 48 (1988), no. 5, 1128–1146. MR 0960475, 10.1137/0148067
Reference: [13] Feireisl E., Málek J.: On the Navier-Stokes equations with temperature-dependent transport coefficients.Differ. Equ. Nonlinear Mech. 2006, Art. ID 90616, 14 pp. (electronic). MR 2233755
Reference: [14] Gallouët T., Lederer J., Lewandowski R., Murat F., Tartar L.: On a turbulent system with unbounded eddy viscosities.Nonlinear Anal. 52 (2003), no. 4, 1051–1068. MR 1941245, 10.1016/S0362-546X(01)00890-2
Reference: [15] Kolmogorov A.N.: Equations of turbulent motion in an incompressible fluid.Izv. Akad. Nauk SSSR, Seria fizicheska 6 (1942), no. 1–2, 56–58.
Reference: [16] Kolmogorov A.N.: Selected works of A.N. Kolmogorov, Vol. I.. Mathematics and Mechanics. With commentaries by V.I. Arnol'd, V.A. Skvortsov, P.L. Ul'yanov et al., translated from the Russian original by V.M. Volosov. Edited and with a preface, foreword and brief biography by V.M. Tikhomirov. Mathematics and its Applications (Soviet Series), 25, Kluwer Academic Publishers Group, Dordrecht, 1991. MR 1175399
Reference: [17] Launder B.E., Spalding D.B.: Mathematical Models of Turbulence.Academic Press, 1972. Zbl 0288.76027
Reference: [18] Lederer J., Lewandowski R.: A RANS 3D model with unbounded eddy viscosities.Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413–441. Zbl 1132.35069, MR 2321200, 10.1016/j.anihpc.2006.03.011
Reference: [19] Lewandowski R.: Les équations de Stokes et de Navier-Stokes couplées avec l'équation de l'énergie cinétique turbulente.C.R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 12, 1097–1102. Zbl 0806.35138, MR 1282351
Reference: [20] Lewandowski R.: Analyse Mathématique et Océanographie.Masson, 1997.
Reference: [21] Lewandowski R.: The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity.Nonlinear Anal. 28 (1997), no. 2, 393–417. Zbl 0863.35077, MR 1418142, 10.1016/0362-546X(95)00149-P
Reference: [22] Lewandowski R., Pichot G.: Numerical simulation of water flow around a rigid fishing net.Comput. Methods Appl. Mech. Engrg. 196 (2007). no. 45–48, 4737–4754. Zbl 1173.76410, MR 2354460, 10.1016/j.cma.2007.06.007
Reference: [23] Lions P.L.: Mathematical Topics in Fluid Mechanics, Vol. 1.Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996. Zbl 0866.76002, MR 1422251
Reference: [24] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and measure-valued solutions to evolutionary PDEs.Chapman & Hall, London, 1996. MR 1409366
Reference: [25] McLaughlin D.W., Papanicolaou G.C., Pironneau O.R.: Convection of microstructure and related problems.SIAM J. Appl. Math. 45 (1985), no. 5, 780–797. Zbl 0622.76062, MR 0804006, 10.1137/0145046
Reference: [26] Mohammadi B., Pironneau O.: Analysis of the $k$-epsilon turbulence model.RAM: Research in Applied Mathematics, Masson, Paris, 1994. MR 1296252
Reference: [27] Naumann J.: On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids.Math. Methods Appl. Sci. 29 (2006), no. 16, 1883–1906. Zbl 1106.76016, MR 2259989, 10.1002/mma.754
Reference: [28] Pichot G., Germain G., Priour D.: On the experimental study of the flow around a fishing net.European Journal of Mechanics - B/Fluids, 28 (2009), 103–116. Zbl 1153.76309, 10.1016/j.euromechflu.2008.02.002
Reference: [29] Simon J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 0916688
Reference: [30] Spalding D.B.: Kolmogorov's two-equation model of turbulence. Turbulence and stochastic processes: Kolmogorov's ideas 50 years on.Proc. Roy. Soc. London Ser. A 434 (1991), no. 1890, 211–216. MR 1124931
Reference: [31] Vasseur A.: A new proof of partial regularity of solutions to Navier-Stokes equations.Nonlinear Differ. Equ. Appl. 14 (2007), 753–785. Zbl 1142.35066, MR 2374209, 10.1007/s00030-007-6001-4
Reference: [32] Vialard J., Delecluse P.: An OGCM study for the TOGA decade, Part II: Barrier-layer formation and variability.J. Phys. Oceanogr. 28 (1998), 1089–1106. 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_7.pdf 367.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo