Article
Keywords:
cardinal invariants; reals; pcf theory; null sets; meager sets; Baire space; additivity
Summary:
The additivity spectrum $\operatorname{ADD}(\mathcal{I})$ of an ideal $\mathcal{I}\subset \mathcal{P}(I)$ is the set of all regular cardinals $\kappa$ such that there is an increasing chain $\{A_\alpha:\alpha<\kappa\}\subset \mathcal{I}$ with $\bigcup_{\alpha<\kappa}A_\alpha\notin \mathcal{I}$. We investigate which set $A$ of regular cardinals can be the additivity spectrum of certain ideals. Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{N}$, where $\mathcal{B}$ denotes the ${\sigma}$-ideal generated by the compact subsets of the Baire space $\omega^\omega$, and $\mathcal{N}$ is the ideal of the null sets. We show that if $A$ is a non-empty progressive set of uncountable regular cardinals and $\operatorname{pcf}(A)=A$, then $\operatorname{ADD}(\mathcal{I})=A$ in some c.c.c generic extension of the ground model. On the other hand, we also show that if $A$ is a countable subset of $\operatorname{ADD}(\mathcal{I})$, then $\operatorname{pcf}(A)\subset \operatorname{ADD}(\mathcal{I})$. For countable sets these results give a full characterization of the additivity spectrum of $\mathcal{I}$: a non-empty countable set $A$ of uncountable regular cardinals can be $\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension iff $A=\operatorname{pcf}(A)$.
References:
[1] Abraham U., Magidor M.:
Cardinal Arithmetic. in Handbook of Set Theory, Springer, New York, 2010.
Zbl 1198.03053
[2] Bartoszynski T., Kada M.:
Hechler's theorem for the meager ideal. Topology Appl. 146/147 (2005), 429–435.
MR 2107162 |
Zbl 1059.03049
[4] Farah I.:
Embedding partially ordered sets into $\omega^\omega$. Fund. Math. 151 (1996), no. 1, 53–95.
MR 1405521
[5] Fremlin D.H.:
Measure theory. Vol. 4, Topological Measure Spaces, Part I, II, Corrected second printing of the 2003 original, Torres Fremlin, Colchester, 2006.
MR 2462372 |
Zbl 1166.28002
[6] Hechler S.H.:
On the existence of certain cofinal subsets of $^{\omega }\omega$. Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), American Mathematical Society, Providence, R.I., 1974., pp. 155–173.
MR 0360266