Title:
|
Quantum logics and bivariable functions (English) |
Author:
|
Drobná, Eva |
Author:
|
Nánásiová, Oĺga |
Author:
|
Valášková, Ĺubica |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
46 |
Issue:
|
6 |
Year:
|
2010 |
Pages:
|
982-995 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice. (English) |
Keyword:
|
finite atomistic quantum logic |
Keyword:
|
orthomodular lattice |
Keyword:
|
conditional state |
Keyword:
|
s-map |
Keyword:
|
d-map |
Keyword:
|
bivariable functions |
Keyword:
|
modeling infimum measure |
Keyword:
|
supremum measure |
Keyword:
|
simultaneous measurements |
MSC:
|
03G10 |
MSC:
|
03G12 |
MSC:
|
03G25 |
MSC:
|
03H05 |
idZBL:
|
Zbl 1229.03054 |
idMR:
|
MR2797422 |
. |
Date available:
|
2011-04-12T12:44:47Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141461 |
. |
Reference:
|
[1] Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic.Inform. Sci. 179 (2009), 4199–4207. Zbl 1180.81005, MR 2722377, 10.1016/j.ins.2009.08.011 |
Reference:
|
[2] Dohnal, G.: Markov property in quantum logic.A reflection. Inform. Sci. 179 (2009), 485–491. Zbl 1161.81309, MR 2490187, 10.1016/j.ins.2008.10.008 |
Reference:
|
[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structure.Kluwer Acad. Publishers, Dortrecht/Boston/London, Ister Science, Bratislava 2000. MR 1861369 |
Reference:
|
[4] Greechie, R. J.: Orthogonal lattices admitting no states.J. Combin. Theory, Ser. A10 (1971), 119–132. MR 0274355, 10.1016/0097-3165(71)90015-X |
Reference:
|
[5] Kalmbach, G.: Orthomodular Lattices.Academic Press, London 1983. Zbl 0528.06012, MR 0716496 |
Reference:
|
[6] Nánásiová, O.: Map for simultaneous measurements for a quantum logic.Internat. J. Theoret. Phys. 42 (2003), 1889–1903. Zbl 1053.81006, MR 2023910, 10.1023/A:1027384132753 |
Reference:
|
[7] Nánásiová, O.: Principle conditioning.Internat. J. Theoret. Phys. 43 (2004), 1757–1767. Zbl 1074.81006, MR 2108309, 10.1023/B:IJTP.0000048818.23615.28 |
Reference:
|
[8] Nánásiová, O., Khrennikov, A.: Representation theorem for observables on a quantum system. Internat. J. Theoret. Phys. 45 (2006), 469–482. MR 2241859, 10.1007/s10773-006-9030-6 |
Reference:
|
[9] Nánásiová, O., Khrennikov, A.: Compatibility and marginality.Internat. J. Theoret. Phys. 46 (2007) 1083–1095. Zbl 1133.81002, MR 2330390, 10.1007/s10773-006-9034-2 |
Reference:
|
[10] Nánásiová, O., Pulmannová, S.: S-map and tracial states.Inform. Sci. 179 (2009) 515–520. Zbl 1161.81311, MR 2490191, 10.1016/j.ins.2008.07.032 |
Reference:
|
[11] Nánásiová, O., Trokanová, K., Žembery, I.: Commutative and non commutative s-maps.Forum Statist. Slovacum 2 (2007) 172–177. |
Reference:
|
[12] Nánásiová, O., Valášková, L’.: Maps on a quantum logic.Soft Computing (2009). doi:10.1007/s00500-009-0483-4 |
Reference:
|
[13] Nánásiová, O., Valášková, L’.: Marginality and triangle inequality Internat.J. Theoret. Phys. (2010), accepted. MR 2738079 |
Reference:
|
[14] Navara, M.: An othomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7–12. MR 1191871, 10.1090/S0002-9939-1994-1191871-X |
Reference:
|
[15] Neumann, J. von: Mathematische Grundlagen der Quantenmechanik.Springer-Verlag, Berlin 1932. MR 0223138 |
Reference:
|
[16] Pták, P., Pulmannová, S.: Quantum Logics.Kluwer Acad. Press, Bratislava 1991. MR 1176314 |
Reference:
|
[17] Varadarajan, V.: Geometry of Quantum Theory.D. Van Nostrand, Princeton, New Jersey 1968. Zbl 0155.56802, MR 0471674 |
. |