Previous |  Up |  Next

Article

Title: Formula for unbiased bases (English)
Author: Kibler, Maurice R.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1122-1137
Summary lang: English
.
Category: math
.
Summary: The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \geq 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach. (English)
Keyword: mutually unbiased bases
Keyword: Weyl pairs
Keyword: phase states
Keyword: Lie algebras
MSC: 81R05
MSC: 81R10
MSC: 81R15
MSC: 81R50
idZBL: Zbl 1209.81049
idMR: MR2797432
.
Date available: 2011-04-12T12:57:35Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141471
.
Reference: [1] Albouy, O., Kibler, M. R.: SU(2) nonstandard bases: Case of mutually unbiased bases.SIGMA 3 (2007), 076 (22 pages). Zbl 1139.81357, MR 2322803
Reference: [2] Aschbacher, M., Childs, A. M., Wocjan, P.: The limitations of nice mutually unbiased bases.J. Algebr. Comb. 25 (2007), 111–123. Zbl 1109.81016, MR 2310416, 10.1007/s10801-006-0002-y
Reference: [3] Atakishiyev, N. M., Kibler, M. R., Wolf, K. B.: SU(2) and SU(1,1) approaches to phase operators and temporally stable phase states: applications to mutually unbiased bases and discrete Fourier transforms.(in preparation)
Reference: [4] Balian, R., Itzykson, C.: Observations sur la mécanique quantique finie.C. R. Acad. Sci. (Paris) 303 (1986), 773–778. Zbl 0606.22017, MR 0872556
Reference: [5] Bandyopadhyay, S., Boykin, P. O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases.Algorithmica 34 (2002), 512–528. Zbl 1012.68069, MR 1943521, 10.1007/s00453-002-0980-7
Reference: [6] Bengtsson, I., Bruzda, W., Ericsson, Å., Larsson, J. Å., Tadej, W., Życkowski, K.: Mutually unbiased bases and Hadamard matrices of order six.J. Math. Phys. 48 (2007), 052106 (21 pages). MR 2326331, 10.1063/1.2716990
Reference: [7] Berndt, B. C., Evans, R. J.: The determination of Gauss sums.Bull. Am. Math. Soc. 5 (1981), 107–130. Zbl 0471.10028, MR 0621882, 10.1090/S0273-0979-1981-14930-2
Reference: [8] Boykin, P. O., Sitharam, M., Tiep, P. H., Wocjan, P.: Mutually unbiased bases and orthogonal decompositions of Lie algebras.Quantum Inf. Comput. 7 (2007), 371–382. Zbl 1152.81680, MR 2363400
Reference: [9] Brierley, S., Weigert, S.: Constructing mutually unbiased bases in dimension six.Phys. Rev. A 79 (2009), 052316 (13 pages). MR 2550430, 10.1103/PhysRevA.79.052316
Reference: [10] Calderbank, A. R., Cameron, P. J., Kantor, W. M., Seidel, J. J.: Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets.Proc. London Math. Soc. 75 (1997), 436–480. MR 1455862
Reference: [11] Daoud, M., Kibler, M. R.: Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems.J. Phys. A: Math. Theor. 43 (2010), 115303 (18 pages). Zbl 1186.81052, MR 2595275, 10.1088/1751-8113/43/11/115303
Reference: [12] Delsarte, P., Goethals, J. M., Seidel, J. J.: Bounds for systems of lines and Jacobi polynomials.Philips Res. Repts. 30 (1975), 91–105. Zbl 0322.05023
Reference: [13] Diţă, P.: Some results on the parametrization of complex Hadamard matrices.J. Phys. A: Math. Gen. 37 (2004), 5355–5374. Zbl 1062.81018, MR 2065675, 10.1088/0305-4470/37/20/008
Reference: [14] Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator.Phys. Rev. A 64 (2001), 012310 (21 pages). 10.1103/PhysRevA.64.012310
Reference: [15] Grassl, M.: Tomography of quantum states in small dimensions.Elec. Notes Discrete Math. 20 (2005), 151–164. Zbl 1179.81042, MR 2301093, 10.1016/j.endm.2005.05.060
Reference: [16] Ivanović, I. D.: Geometrical description of quantum state determination.J. Phys. A: Math. Gen. 14 (1981), 3241–3245. MR 0639558, 10.1088/0305-4470/14/12/019
Reference: [17] Kibler, M. R.: Angular momentum and mutually unbiased bases.Int. J. Mod. Phys. B 20 (2006), 1792–1801. Zbl 1093.81034, MR 2234957, 10.1142/S0217979206034297
Reference: [18] Kibler, M. R.: Variations on a theme of Heisenberg, Pauli and Weyl.J. Phys. A: Math. Theor. 41 (2008), 375302 (19 pages). Zbl 1147.81014, MR 2430579, 10.1088/1751-8113/41/37/375302
Reference: [19] Kibler, M. R.: An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group.J. Phys. A: Math. Theor. 42 (2009), 353001 (28 pages). MR 2533879, 10.1088/1751-8113/42/35/353001
Reference: [20] Kibler, M. R., Planat, M.: A SU(2) recipe for mutually unbiased bases.Int. J. Mod. Phys. B 20 (2006), 1802–1807. Zbl 1093.81035, MR 2234958, 10.1142/S0217979206034303
Reference: [21] Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits.Phys. Rev. A 65 (2002), 032320 (5 pages). 10.1103/PhysRevA.65.032320
Reference: [22] Patera, J., Zassenhaus, H.: The Pauli matrices in $n$ dimensions and finest gradings of simple Lie algebras of type $A_{n-1}$.J. Math. Phys. 29 (1988), 665–673. MR 0931470, 10.1063/1.528006
Reference: [23] Pittenger, A. O., Rubin, M. H.: Wigner functions and separability for finite systems.J. Phys. A: Math. Gen. 38 (2005), 6005–6036. Zbl 1073.81058, MR 2167959, 10.1088/0305-4470/38/26/012
Reference: [24] Šťovíček, P., Tolar, J.: Quantum mechanics in a discrete space-time.Rep. Math. Phys. 20 (1984), 157–170. MR 0776027, 10.1016/0034-4877(84)90030-2
Reference: [25] Šulc, P., Tolar, J.: Group theoretical construction of mutually unbiased bases in Hilbert spaces of prime dimensions.J. Phys. A: Math. Gen. 40 (2007), 15099 (13 pages). Zbl 1134.81323, MR 2442616, 10.1088/1751-8113/40/50/013
Reference: [26] Tadej, W., Życzkowski, K.: A concise guide to complex Hadamard matrices.Open Sys. Info. Dynamics 13 (2006), 133–177. Zbl 1105.15020, MR 2244963, 10.1007/s11080-006-8220-2
Reference: [27] Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions.Quantum Inf. Comput. 5 (2005), 93–101. Zbl 1213.81108, MR 2132048
Reference: [28] Wootters, W. K., Fields, B. D.: Optimal state-determination by mutually unbiased measurements.Ann. Phys. (N.Y.) 191 (1989), 363–381. MR 1003014, 10.1016/0003-4916(89)90322-9
.

Files

Files Size Format View
Kybernetika_46-2010-6_16.pdf 280.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo