Previous |  Up |  Next

Article

Title: Orthocomplemented difference lattices with few generators (English)
Author: Matoušek, Milan
Author: Pták, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 1
Year: 2011
Pages: 60-73
Summary lang: English
.
Category: math
.
Summary: The algebraic theory of quantum logics overlaps in places with certain areas of cybernetics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort has been exercised to advance with logics that possess a symmetric difference ([13, 14]) - with so called orthocomplemented difference lattices (ODLs). This paper further contributes to this effort. In [13] the author constructs an ODL that is not set-representable. This example is quite elaborate. A main result of this paper somewhat economizes on this construction: There is an ODL with 3 generators that is not set-representable (and so the free ODL with 3 generators cannot be set-representable). The result is based on a specific technique of embedding orthomodular lattices into ODLs. The ODLs with 2 generators are always set-representable as we show by characterizing the free ODL with 2 generators - this ODL is ${\rm MO}_3 \times 2^4$. (English)
Keyword: orthomodular lattice
Keyword: quantum logic
Keyword: symmetric difference
Keyword: Gödel's coding
Keyword: Boolean algebra
Keyword: free algebra
MSC: 03G12
MSC: 06C15
MSC: 81B10
idZBL: Zbl 1221.06011
idMR: MR2807864
.
Date available: 2011-04-12T13:03:47Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141478
.
Reference: [1] Beran, L.: Orthomodular Lattices, Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029
Reference: [2] Bruns, G., Harding, J.: Algebraic aspects of orthomodular lattices.In: Current Research in Operational Quantum Logic (B. Coecke, D. Moore and A. Wilce, eds.), Kluwer Academic Publishers 2000, pp. 37–65. Zbl 0955.06003, MR 1907155
Reference: [3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer-Verlag, New York 1981. Zbl 0478.08001, MR 0648287
Reference: [4] Chiara, M. L. Dalla, Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics.Kluwer Academic Publishers, Dordrecht, Boston, London 2004. MR 2069854
Reference: [5] Dorfer, G., Dvurečenskij, A., Länger, H. M.: Symmetric difference in orthomodular lattices.Math. Slovaca 46 (1996), 435–444. MR 1451034
Reference: [6] Dorfer, G.: Non-commutative symmetric differences in orthomodular lattices.Internat. J. Theoret. Phys. 44 (2005), 885–896. MR 2199505, 10.1007/s10773-005-7066-7
Reference: [7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, and Ister Science, Bratislava 2000. MR 1861369
Reference: [8] Godowski, R., Greechie, R. J.: Some equations related to states on orthomodular lattices.Demonstratio Math. XVII (1984), 1, 241–250. Zbl 0553.06013, MR 0760356
Reference: [9] Greechie, R. J.: Orthomodular lattices admitting no states.J. Combinat. Theory 10 (1971), 119–132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [10] Engesser, K., Gabbay, D.M., ed., D. Lehmann: Handbook of Quantum Logic and Quantum Structures.Elsevier 2007. MR 2408886
Reference: [11] Havlík, F.: Ortokomplementární diferenční svazy (in Czech).(Mgr. Thesis, Department of Logic, Faculty of Arts, Charles University in Prague 2007).
Reference: [12] Kalmbach, G.: Orthomodular Lattices.Academic Press, London 1983. Zbl 0528.06012, MR 0716496
Reference: [13] Matoušek, M.: Orthocomplemented lattices with a symmetric difference.Algebra Universalis 60 (2009), 185–215. Zbl 1186.06004, MR 2491422, 10.1007/s00012-009-2105-5
Reference: [14] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference.Order 26 (2009), 1–21. Zbl 1201.06006, MR 2487165, 10.1007/s11083-008-9102-8
Reference: [15] Matoušek, M., Pták, P.: On identities in orthocomplemented difference lattices.Math. Slovaca 60 (2010), 5, 583–590. Zbl 1249.06025, MR 2728524, 10.2478/s12175-010-0033-7
Reference: [16] Matoušek, M., Pták, P.: Symmetric difference on orthomodular lattices and $Z_2$-valued states.Comment. Math. Univ. Carolin. 50 (2009), 4, 535–547. Zbl 1212.06021, MR 2583131
Reference: [17] Navara, M., Pták, P.: Almost Boolean orthomodular posets.J. Pure Appl. Algebra 60 (1989), 105–111. MR 1014608, 10.1016/0022-4049(89)90108-4
Reference: [18] Park, E., Kim, M. M., Chung, J. Y.: A note on symmetric differences of orthomodular lattices.Commun. Korean Math. Soc. 18 (2003), 2, 207–214. Zbl 1101.06301, MR 1986740, 10.4134/CKMS.2003.18.2.207
Reference: [19] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht, Boston, London 1991. MR 1176314
Reference: [20] Watanabe, S.: Modified concepts of logic, probability and integration based on generalized continuous characteristic function.Inform. and Control 2 (1969), 1–21. MR 0267964, 10.1016/S0019-9958(69)90581-6
.

Files

Files Size Format View
Kybernetika_47-2011-1_5.pdf 279.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo