Previous |  Up |  Next

Article

Title: Goodman-Kruskal Measure of Association for Fuzzy-Categorized Variables (English)
Author: Taheri, S. M.
Author: Hesamian, G.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 1
Year: 2011
Pages: 110-122
Summary lang: English
.
Category: math
.
Summary: The Goodman-Kruskal measure, which is a well-known measure of dependence for contingency tables, is generalized to the case when the variables of interest are categorized by linguistic terms rather than crisp sets. In addition, to test the hypothesis of independence in such contingency tables, a novel method of decision making is developed based on a concept of fuzzy $p$-value. The applicability of the proposed approach is explained using a numerical example. (English)
Keyword: fuzzy frequency
Keyword: fuzzy category
Keyword: fuzzy Goodman–Kruskal statistic
Keyword: fuzzy $p$-value
Keyword: fuzzy significance level
Keyword: NSD index
MSC: 62A10
MSC: 93E12
idZBL: Zbl 1213.93199
idMR: MR2807868
.
Date available: 2011-04-12T13:09:18Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141482
.
Reference: [1] Agresti, A.: Categorical Data Analysis.Second Edition. J. Wiley, New York 2002. Zbl 1018.62002, MR 1914507
Reference: [2] Brown, M. B., Benedetti, J. K.: Sampling behavior of tests for correlation in two-way contingency tables.J. Amer. Statist. Assoc. 72 (1977), 309–315.
Reference: [3] Denoeux, T., Masson, M. H., Herbert, P. H.: Non-parametric rank-based statistics and significance tests for fuzzy data.Fuzzy Sets and Systems 153 (2005), 1–28. MR 2202121
Reference: [4] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory.Inform. Sci. 30 (1983), 183–224. MR 0730910, 10.1016/0020-0255(83)90025-7
Reference: [5] Engelgau, M. M., Thompson, T. J., Herman, W. H., Boyle, J. P., Aubert, R. E., Kenny, S. J., Badran, A., Sous, E. S., Ali, M. A.: Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes: diagnostic critera and performance revisited.Diabetes Care 20 (1997), 785–791. 10.2337/diacare.20.5.785
Reference: [6] Gibbons, J. D.: Nonparametric Measures of Association.Sage Publication, Newbury Park 1993.
Reference: [7] Goodman, L. A., Kruskal, W. H.: Measures of association for cross classifications.J. Amer. Statist. Assoc. 49 (1954), 732–764. Zbl 0056.12801
Reference: [8] Goodman, L. A., Kruskal, W. H.: Measures of Association for Cross Classifications.Springer, New York 1979. Zbl 0426.62034, MR 0553108
Reference: [9] Grzegorzewski, P.: Statistical inference about the median from vague data.Control Cybernet. 27 (1998), 447–464. Zbl 0945.62038, MR 1663896
Reference: [10] Grzegorzewski, P.: Distribution-free tests for vague data.In: Soft Methodology and Random Information Systems (M. Lopez-Diaz et al., eds.), Springer, Heidelberg 2004, pp. 495–502. Zbl 1064.62052, MR 2118134
Reference: [11] Grzegorzewski, P.: Two-sample median test for vague data.In: Proc. $4$th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621–626.
Reference: [12] Grzegorzewski, P.: K-sample median test for vague data.Internat. J. Intelligent Systems 24 (2009), 529–539. Zbl 1160.62039, 10.1002/int.20345
Reference: [13] Holena, M.: Fuzzy hypotheses testing in a framework of fuzzy logic.Fuzzy Sets and Systems 145 (2004), 229–252. MR 2073999, 10.1016/S0165-0114(03)00208-2
Reference: [14] Hryniewicz, O. : Selection of variables for systems analysis, application of a fuzzy statistical test for independence.Proc. IPMU, Perugia 3 (2004), 2197–2204.
Reference: [15] Hryniewicz, O.: Goodman-Kruskal $\gamma $ measure of dependence for fuzzy ordered categorical data.Comput. Statist. Data Anal. 51 (2006), 323–334. Zbl 1157.62424, MR 2297603, 10.1016/j.csda.2006.04.014
Reference: [16] Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests.Fuzzy Sets and Systems 157 (2006), 2665–2673. Zbl 1099.62008, MR 2328390
Reference: [17] Kahranam, C., Bozdag, C. F., Ruan, D.: Fuzzy sets approaches to statistical parametric and non-parametric tests.Internat. J. Intelligent Systems 19 (2004), 1069–1078. 10.1002/int.20037
Reference: [18] Kruse, R., Meyer, K. D. : Statistics with Vague Data.Reidel Publishing, New York 1987. Zbl 0663.62010, MR 0913303
Reference: [19] Lee, K. H.: First Course on Fuzzy Theory and Applications.Springer, Heidelberg 2005. Zbl 1063.94129
Reference: [20] Mareš, M.: Fuzzy data in statistics.Kybernetika 43 (2007), 491–502. Zbl 1134.62001, MR 2377927
Reference: [21] Pourahmad, S., Ayatollahi, S. M. T., Taheri, S. M.: Fuzzy logistic regression, a new possibilistic model and its application in clinical diagnosis.Iranian J. Fuzzy Systems, to appear.
Reference: [22] Tabaei, B. P., Herman, W. H.: A multivariate logistic regression equation to screen for diabetes.Diabetes Care 25 (2002), 1999–2003.
Reference: [23] Venkataraman, P.: Applied Optimization with MATLAB Programming.J. Wiley, New York 2002.
Reference: [24] Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (II).Fuzzy Sets and Systems 118 (2001), 387–405. Zbl 0971.03055, MR 1809387
Reference: [25] Yoan, Y.: Criteria for evaluating fuzzy ranking methods.Fuzzy Sets and Systems 43 (1991), 139–157. MR 1127998, 10.1016/0165-0114(91)90073-Y
Reference: [26] Viertl, R.: Statistical Methods for Non-Precise Data.CRC Press, Boca Raton 1996. MR 1382865
.

Files

Files Size Format View
Kybernetika_47-2011-1_9.pdf 329.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo