Previous |  Up |  Next

Article

Title: Curvature bounds for neighborhoods of self-similar sets (English)
Author: Winter, Steffen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 2
Year: 2011
Pages: 205-226
Summary lang: English
.
Category: math
.
Summary: In some recent work, fractal curvatures $C^f_k(F)$ and fractal curvature measures $C^f_k(F,\cdot )$, $k= 0,\ldots ,d$, have been determined for all self-similar sets $F$ in $\mathbb R^d$, for which the parallel neighborhoods satisfy a certain regularity condition and a certain rather technical curvature bound. The regularity condition is conjectured to be always satisfied, while the curvature bound has recently been shown to fail in some concrete examples. As a step towards a better understanding of its meaning, we discuss several equivalent formulations of the curvature bound condition and also a very natural technically simpler condition which turns out to be stronger. These reformulations show that the validity of this condition does not depend on the choice of the open set and the constant $R$ appearing in the condition and allow to discuss some concrete examples of self-similar sets. In particular, it is shown that the class of sets satisfying the curvature bound condition is strictly larger than the class of sets satisfying the assumption of polyconvexity used in earlier results. (English)
Keyword: self-similar set
Keyword: parallel set
Keyword: curvature measures
Keyword: fractal curvatures
Keyword: Minkowski content
Keyword: Minkowski dimension
Keyword: regularity condition
Keyword: curvature bound condition
MSC: 28A75
MSC: 28A78
MSC: 28A80
MSC: 53C65
idZBL: Zbl 1240.28006
idMR: MR2849046
.
Date available: 2011-05-17T08:35:13Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141497
.
Reference: [1] Cheeger J., Müller W., Schrader R.: On the curvature of piecewise flat spaces.Comm. Math. Phys. 92 (1984), 405–454. MR 0734226, 10.1007/BF01210729
Reference: [2] Bröcker L., Kuppe M.: Integral geometry of tame sets.Geom. Dedicata 82 (2000), 1897–1924. MR 1789065, 10.1023/A:1005248711077
Reference: [3] Falconer K.J.: On the Minkowski measurability of fractals.Proc. Am. Math. Soc. 123 (1995), no. 4, 1115–1124. Zbl 0838.28006, MR 1224615, 10.1090/S0002-9939-1995-1224615-4
Reference: [4] Federer H.: Curvature measures.Trans. Amer. Math. Soc. 93 (1959), 418–491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1
Reference: [5] Fu J.H.G.: Tubular neighborhoods in Euclidean spaces.Duke Math. J. 52 (1985), 1025–1046. Zbl 0592.52002, MR 0816398, 10.1215/S0012-7094-85-05254-8
Reference: [6] Gatzouras D.: Lacunarity of self-similar and stochastically self-similar sets.Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. Zbl 0946.28006, MR 1694290, 10.1090/S0002-9947-99-02539-8
Reference: [7] Hutchinson J.E.: Fractals and self similarity.Indiana Univ. Math. J. 30 (1981), 713–747. Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [8] Lapidus M.L., Pomerance C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums.Proc. London Math. Soc. 66 (1993), no. 1, 41–69. Zbl 0739.34065, MR 1189091
Reference: [9] Llorente M., Winter S.: A notion of Euler characteristic for fractals.Math. Nachr. 280 (2007), no. 1–2, 152–170. Zbl 1118.28006, MR 2290389, 10.1002/mana.200410471
Reference: [10] Rataj J., Winter S.: On volume and surface area of parallel sets.Indiana Univ. Math. J., to appear, online-preprint: http://www.iumj.indiana.edu/IUMJ/Preprints/4165.pdf.
Reference: [11] Schief A.: Separation properties for self-similar sets.Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. Zbl 0807.28005, MR 1191872, 10.1090/S0002-9939-1994-1191872-1
Reference: [12] Winter S.: Curvature measures and fractals.Dissertationes Math. 453 (2008), 1–66. Zbl 1139.28300, MR 2423952, 10.4064/dm453-0-1
Reference: [13] Winter S., Zähle M.: Fractal curvature measures of self-similar sets.submitted, arxiv.org/abs/1007.0696v2.
Reference: [14] Zähle M.: Curvatures and currents for unions of sets with positive reach.Geom. Dedicata 23 (1987), 155–171. MR 0892398, 10.1007/BF00181273
Reference: [15] Zähle M.: Approximation and characterization of generalized Lipschitz-Killing curvatures.Ann. Global Anal. Geom. 8 (1990), 249–260. MR 1089237, 10.1007/BF00127938
Reference: [16] Zähle M.: Lipschitz-Killing curvatures of self-similar random fractals.Trans. Amer. Math. Soc. 363 (2011), 2663–2684. MR 2763731, 10.1090/S0002-9947-2010-05198-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-2_4.pdf 382.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo