Title:
|
Curvature bounds for neighborhoods of self-similar sets (English) |
Author:
|
Winter, Steffen |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
205-226 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In some recent work, fractal curvatures $C^f_k(F)$ and fractal curvature measures $C^f_k(F,\cdot )$, $k= 0,\ldots ,d$, have been determined for all self-similar sets $F$ in $\mathbb R^d$, for which the parallel neighborhoods satisfy a certain regularity condition and a certain rather technical curvature bound. The regularity condition is conjectured to be always satisfied, while the curvature bound has recently been shown to fail in some concrete examples. As a step towards a better understanding of its meaning, we discuss several equivalent formulations of the curvature bound condition and also a very natural technically simpler condition which turns out to be stronger. These reformulations show that the validity of this condition does not depend on the choice of the open set and the constant $R$ appearing in the condition and allow to discuss some concrete examples of self-similar sets. In particular, it is shown that the class of sets satisfying the curvature bound condition is strictly larger than the class of sets satisfying the assumption of polyconvexity used in earlier results. (English) |
Keyword:
|
self-similar set |
Keyword:
|
parallel set |
Keyword:
|
curvature measures |
Keyword:
|
fractal curvatures |
Keyword:
|
Minkowski content |
Keyword:
|
Minkowski dimension |
Keyword:
|
regularity condition |
Keyword:
|
curvature bound condition |
MSC:
|
28A75 |
MSC:
|
28A78 |
MSC:
|
28A80 |
MSC:
|
53C65 |
idZBL:
|
Zbl 1240.28006 |
idMR:
|
MR2849046 |
. |
Date available:
|
2011-05-17T08:35:13Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141497 |
. |
Reference:
|
[1] Cheeger J., Müller W., Schrader R.: On the curvature of piecewise flat spaces.Comm. Math. Phys. 92 (1984), 405–454. MR 0734226, 10.1007/BF01210729 |
Reference:
|
[2] Bröcker L., Kuppe M.: Integral geometry of tame sets.Geom. Dedicata 82 (2000), 1897–1924. MR 1789065, 10.1023/A:1005248711077 |
Reference:
|
[3] Falconer K.J.: On the Minkowski measurability of fractals.Proc. Am. Math. Soc. 123 (1995), no. 4, 1115–1124. Zbl 0838.28006, MR 1224615, 10.1090/S0002-9939-1995-1224615-4 |
Reference:
|
[4] Federer H.: Curvature measures.Trans. Amer. Math. Soc. 93 (1959), 418–491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1 |
Reference:
|
[5] Fu J.H.G.: Tubular neighborhoods in Euclidean spaces.Duke Math. J. 52 (1985), 1025–1046. Zbl 0592.52002, MR 0816398, 10.1215/S0012-7094-85-05254-8 |
Reference:
|
[6] Gatzouras D.: Lacunarity of self-similar and stochastically self-similar sets.Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. Zbl 0946.28006, MR 1694290, 10.1090/S0002-9947-99-02539-8 |
Reference:
|
[7] Hutchinson J.E.: Fractals and self similarity.Indiana Univ. Math. J. 30 (1981), 713–747. Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055 |
Reference:
|
[8] Lapidus M.L., Pomerance C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums.Proc. London Math. Soc. 66 (1993), no. 1, 41–69. Zbl 0739.34065, MR 1189091 |
Reference:
|
[9] Llorente M., Winter S.: A notion of Euler characteristic for fractals.Math. Nachr. 280 (2007), no. 1–2, 152–170. Zbl 1118.28006, MR 2290389, 10.1002/mana.200410471 |
Reference:
|
[10] Rataj J., Winter S.: On volume and surface area of parallel sets.Indiana Univ. Math. J., to appear, online-preprint: http://www.iumj.indiana.edu/IUMJ/Preprints/4165.pdf. |
Reference:
|
[11] Schief A.: Separation properties for self-similar sets.Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. Zbl 0807.28005, MR 1191872, 10.1090/S0002-9939-1994-1191872-1 |
Reference:
|
[12] Winter S.: Curvature measures and fractals.Dissertationes Math. 453 (2008), 1–66. Zbl 1139.28300, MR 2423952, 10.4064/dm453-0-1 |
Reference:
|
[13] Winter S., Zähle M.: Fractal curvature measures of self-similar sets.submitted, arxiv.org/abs/1007.0696v2. |
Reference:
|
[14] Zähle M.: Curvatures and currents for unions of sets with positive reach.Geom. Dedicata 23 (1987), 155–171. MR 0892398, 10.1007/BF00181273 |
Reference:
|
[15] Zähle M.: Approximation and characterization of generalized Lipschitz-Killing curvatures.Ann. Global Anal. Geom. 8 (1990), 249–260. MR 1089237, 10.1007/BF00127938 |
Reference:
|
[16] Zähle M.: Lipschitz-Killing curvatures of self-similar random fractals.Trans. Amer. Math. Soc. 363 (2011), 2663–2684. MR 2763731, 10.1090/S0002-9947-2010-05198-0 |
. |