Previous |  Up |  Next

Article

Keywords:
periodic solution; limit cycle; polynomial nonlinearity
Summary:
New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.
References:
[1] Álvarez, A., Bravo, J.-L., Fernández, M.: The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Commun. Pure Appl. Anal. 8 (2009), 1493-1501. DOI 10.3934/cpaa.2009.8.1493 | MR 2505282
[2] Álvarez, M. J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits of Abel equations. J. Differ. Equations 234 (2007), 161-176. DOI 10.1016/j.jde.2006.11.004 | MR 2298969
[3] Álvarez, M. J., Gasull, A., Prohens, R.: On the number of limit cycles of some systems on the cylinder. Bull. Sci. Math. 131 (2007), 620-637. DOI 10.1016/j.bulsci.2006.04.005 | MR 2391338
[4] Alwash, M. A. M.: Periodic solutions of polynomial non-autonomous differential equations. Electron. J. Differ. Equ. 2005 (2005), 1-8. MR 2162245 | Zbl 1075.34514
[5] Alwash, M. A. M.: Periodic solutions of Abel differential equations. J. Math. Anal. Appl. 329 (2007), 1161-1169. DOI 10.1016/j.jmaa.2006.07.039 | MR 2296914 | Zbl 1154.34397
[6] Cherkas, L A.: Number of limit cycles of an autonomous second-order system. Differ. Equations 12 (1976), 666-668.
[7] Gasull, A., Guillamon, A.: Limit cycles for generalized Abel equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737-3745. DOI 10.1142/S0218127406017130 | MR 2295352 | Zbl 1140.34348
[8] Gasull, A., Llibre, J.: Limit cycles for a class of Abel equations. SIAM J. Math. Anal. 21 (1990), 1235-1244. DOI 10.1137/0521068 | MR 1062402 | Zbl 0732.34025
[9] Gasull, A., Torregrosa, J.: Exact number of limit cycles for a family of rigid systems. Proc. Am. Math. Soc. 133 (2005), 751-758. DOI 10.1090/S0002-9939-04-07542-2 | MR 2113924 | Zbl 1062.34030
[10] Korman, P., Ouyang, T.: Exact multiplicity results for two classes of periodic equations. J. Math. Anal. Appl. 194 (1995), 763-379. DOI 10.1006/jmaa.1995.1328 | MR 1350195 | Zbl 0844.34036
[11] Lins-Neto, A.: On the number of solutions of the equation $\sum\nolimits_{j=0}^{n}a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$. Invent. Math. 59 (1980), 69-76.
[12] Nkashama, M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381-395. DOI 10.1016/0022-247X(89)90072-3 | MR 1001864 | Zbl 0674.34009
[13] Pliss, V. A.: Nonlocal Problems of the Theory of Oscillations. Academic Press New York (1966). MR 0196199 | Zbl 0151.12104
[14] Sandqvist, A., Andersen, K. M.: On the number of closed solutions to an equation ${\dot x}=f(t,x)$, where $f_{x^n}(t,x)\geq 0$ ($n=1,2, {or} 3$). J. Math. Anal. Appl. 159 (1991), 127-146. DOI 10.1016/0022-247X(91)90225-O | MR 1119425
Partner of
EuDML logo