Previous |  Up |  Next

Article

Title: Simultaneous solution of linear equations and inequalities in max-algebra (English)
Author: Aminu, Abdulhadi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 241-250
Summary lang: English
.
Category: math
.
Summary: Let $a øplus b=\max(a,b)$ and $a øtimes b = a+b$ for $a,b\in{\mathbb{R}}$. Max-algebra is an analogue of linear algebra developed on the pair of operations $(øplus, øtimes)$ extended to matrices and vectors. The system of equations $A øtimes x=b$ and inequalities $C øtimes x łeq d$ have each been studied in the literature. We consider a problem consisting of these two systems and present necessary and sufficient conditions for its solvability. We also develop a polynomial algorithm for solving max-linear program whose constraints are max-linear equations and inequalities. (English)
Keyword: max-algebra
Keyword: linear equations and inequalities
Keyword: max-linear programming
MSC: 15A06
MSC: 15A39
MSC: 90C26
MSC: 90C27
idZBL: Zbl 1222.15002
idMR: MR2828575
.
Date available: 2011-06-06T14:55:54Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141570
.
Reference: [1] Aminu, A.: Max-algebraic Linear Systems and Programs.PhD Thesis, University of Birmingham 2009.
Reference: [2] Bacelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester 1992. MR 1204266
Reference: [3] Butkovič, P.: Max-linear Systems: Theory and Algorithms.Springer Monographs in Mathematics, Springer-Verlag 2010. Zbl 1202.15032, MR 2681232, 10.1007/978-1-84996-299-5_7
Reference: [4] Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra & Appl.367 (2003), 313–335. MR 1976928, 10.1016/S0024-3795(02)00655-9
Reference: [5] Butkovič, P., Aminu, A.: Introduction to Max-linear programming.IMA J. Management Math. 20 (2009), 3, 233–249. Zbl 1169.90396, MR 2511497, 10.1093/imaman/dpn029
Reference: [6] Butkovič, P., Hegedüs, G.: An elimination method for finding all solutions of the system of linear equations over an extremal algebra.Ekonom. mat. Obzor. 20 (1984), 203–215. MR 0782401
Reference: [7] Cuninghame-Green, R. A.: Minimax Algebra (Lecture Notes in Econom.and Math. Systems 166). Springer, Berlin 1979. MR 0580321
Reference: [8] Cuninghame-Green, R. A., Butkovič, P.: The equation $A\otimes {x}=B\otimes {y}$ over $(\max ,+)$.Theoret. Comput. Sci. 293 (1991), 3–12. MR 1957609
Reference: [9] Heidergott, B., Olsder, G. J., Woude, J. van der: Max-plus at work, Modelling and Analysis of Synchronized Systems: A course on Max-Plus Algebra and Its Applications.Princeton University Press, New Jersey 2006. MR 2188299
Reference: [10] Vorobyov, N. N.: Extremal algebra of positive matrices (in Russian).Elektron. Datenverarbeitung Kybernet. 3 (1967), 39–71. MR 0216854
Reference: [11] Walkup, E. A., Boriello, G.: A general linear max-plus solution technique.In: Idempotency (Gunawardena, ed.), Cambridge University Press 1988, pp. 406–415.
Reference: [12] Zimmermann, K.: Extremální algebra (in Czech).Výzkumná publikace Ekonomicko-matematické laboratoře při Ekonomickém ústavu ČSAV, 46, Praha 1976.
.

Files

Files Size Format View
Kybernetika_47-2011-2_5.pdf 238.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo