Previous |  Up |  Next

Article

Title: A T-partial order obtained from T-norms (English)
Author: Karaçal, Funda
Author: Kesicioğlu, M. Nesibe
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 300-314
Summary lang: English
.
Category: math
.
Summary: A partial order on a bounded lattice $L$ is called t-order if it is defined by means of the t-norm on $L$. It is obtained that for a t-norm on a bounded lattice $L$ the relation $a\preceq_{T}b$ iff $a=T(x,b)$ for some $x\in L$ is a partial order. The goal of the paper is to determine some conditions such that the new partial order induces a bounded lattice on the subset of all idempotent elements of $L$ and a complete lattice on the subset $A$ of all elements of $L$ which are the supremum of a subset of atoms. (English)
Keyword: triangular norm
Keyword: bounded lattice
Keyword: triangular action
Keyword: $\bigvee $-distributive
Keyword: idempotent element
MSC: 03B52
MSC: 03E72
idZBL: Zbl 1245.03086
idMR: MR2828579
.
Date available: 2011-06-06T15:02:20Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141574
.
Reference: [1] Birkhoff, G.: Lattice Theory.Third edition. Providience 1967. Zbl 0153.02501, MR 0227053
Reference: [2] Baets, B. De, Mesiar, R.: Triangular norms on product lattices.Fuzzy Sets and Systems104 (1999), 61–75. Zbl 0935.03060, MR 1685810
Reference: [3] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square.In: Proc. 1999 EUSFLAT-EST YLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
Reference: [4] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets.Fuzzy Sets and Systems 1599 (2008), 1165–1177. Zbl 1176.03023, MR 2416385
Reference: [5] Drossos, C. A.: Generalized t-norm structures.Fuzzy Sets and Systems 104 (1999), 53–59. Zbl 0928.03069, MR 1685809
Reference: [6] Gonzalez, L.: A note on the infinitary action of triangular norms and conorms.Fuzzy Sets and Systems 101 (1999), 177–180. Zbl 0934.03033, MR 1658924
Reference: [7] Gottwald, S.: A Treatise on Many-Valued Logics.Research Studies Press Ltd., Baldock, Hertfordshire 2001. Zbl 1048.03002, MR 1856623
Reference: [8] Hungerford, T.: Algebra.Springer-Verlag 1974. Zbl 0293.12001, MR 0600654
Reference: [9] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers, Dordrecht 1998. MR 1900263
Reference: [10] Höhle, U.: Commutative, residuated $\ell $-monoids.In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory (U. H$\ddot{o}$hle and E. P. Klement, eds.). Kluwer, Dordrecht 1995.
Reference: [11] Jenei, S., Baets, B. De: On the direct decomposability of t-norms on product lattices.Fuzzy Sets and Systems 139 (2003), 699–707. Zbl 1032.03022, MR 2015162
Reference: [12] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee $-distributive t-norm on complete lattices and pseudo-complements.Fuzzy Sets and Systems 160 (2009), 32–43.
Reference: [13] Karaçal, F., Khadjiev, Dj.: $\bigvee $-distributive and infinitely $\bigvee $-distributive t-norms on complete lattice.Fuzzy Sets and Systems 151 (2005), 341–352. MR 2124884
Reference: [14] Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices.Inform. Sci. 176 (2006), 3011–3025. Zbl 1104.03016, MR 2247614, 10.1016/j.ins.2005.12.010
Reference: [15] P.Klement, E.: Operations on fuzzy sets-an axiomatic approach.Inform. Sci. 27 (1982), 221–232. Zbl 0515.03036, MR 0689642, 10.1016/0020-0255(82)90026-3
Reference: [16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000. Zbl 1010.03046, MR 1790096
Reference: [17] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms.Fuzzy Sets and Systems 160 (2009), 3475–3502. Zbl 1185.68546, MR 2563300
Reference: [18] Maes, K. C., Mesiarová-Zemánková, A.: Cancellativity properties for t-norms and t-subnorms.Inform. Sci. 179 (2009), 1221–1233. Zbl 1162.03013, MR 2501780, 10.1016/j.ins.2008.11.035
Reference: [19] Mesiarová, A.: H-transformation of t-norms.Inform. Sci. 176 (2006), 1531–1545. Zbl 1094.03040, MR 2225327, 10.1016/j.ins.2005.03.011
Reference: [20] Mitsch, H.: A natural partial order for semigroups.Proc. Amer. Math. Soc. 97 (1986), 384–388. Zbl 0596.06015, MR 0840614, 10.1090/S0002-9939-1986-0840614-0
Reference: [21] Saminger, S.: On ordinal sums of triangular norms on bounded lattices.Fuzzy Sets and Systems 157 (2006), 1403–1416. Zbl 1099.06004, MR 2226983
Reference: [22] Saminger-Platz, S., Klement, E. P., Mesiar, R.: On extensions of triangular norms on bounded lattices.Indag. Math. 19 (2009), 135–150. MR 2466398, 10.1016/S0019-3577(08)80019-5
Reference: [23] Samuel, S.: Calculating the large N phase diagram in the fundamental-adjoint action lattice theory.Phys. Lett. 122 (1983), 287–289.
Reference: [24] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces.Elsevier, Amsterdam 1983. Zbl 0546.60010, MR 0790314
Reference: [25] Wang, Z.: T-filters of integral residuated $\ell $-monoids.Inform. Sci. 177 (2007), 887–896. MR 2287146, 10.1016/j.ins.2006.03.019
.

Files

Files Size Format View
Kybernetika_47-2011-2_9.pdf 286.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo