Previous |  Up |  Next

Article

Title: An admissible estimator of a lower-bounded scale parameter under squared-log error loss function (English)
Author: Mahmoudi, Eisa
Author: Zakerzadeh, Hojatollah
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 4
Year: 2011
Pages: 595-611
Summary lang: English
.
Category: math
.
Summary: Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributions. Bayes estimator of a lower-bounded scale parameter, under the squared-log error loss function with a sequence of boundary supported priors is obtained. An admissible estimator of a lower-bounded scale parameter, which is the limiting Bayes estimator, is given. Also another class of estimators of a lower-bounded scale parameter, which is called the truncated linear estimators, is considered and several interesting properties of the estimators in this class are studied. Some comparisons of the estimators in this class with an admissible estimator of a lower-bounded scale parameter are presented. (English)
Keyword: admissibility
Keyword: Bayes estimator
Keyword: truncated parameter spaces
Keyword: squared-log error loss
MSC: 62C10
MSC: 62C15
MSC: 62C20
idZBL: Zbl 1227.62006
idMR: MR2884863
.
Date available: 2011-09-23T11:26:46Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141661
.
Reference: [1] Berry, J. C.: Minimax estimation of a restricted exponential location parameter.Statist. Decision 11 (1993), 307–316. Zbl 0792.62006, MR 1261841
Reference: [2] Blyth, C. R.: Minimax statistical procesures and their admissibility.Ann. Math. Statist. 22 (1951), 22–42. MR 0039966, 10.1214/aoms/1177729690
Reference: [3] Brown, L.: Inadmissibility of the usual estimators of scale parameters in problems with uknown location and scale parameters.Ann. Math. Statist. 29(1) (1968), 29–48. MR 0222992, 10.1214/aoms/1177698503
Reference: [4] Ferguson, T. S.: Mathematical Statistics: A Decision Theoretic Approach.Academic Press, New York 1967. Zbl 0153.47602, MR 0215390
Reference: [5] Hoaglin, D. C.: The small-sample variance of the Pitman location estimators.J. Amer. Statist. Assoc. 70 (1975), 880–888. Zbl 0327.62029, 10.1080/01621459.1975.10480317
Reference: [6] Jozani, M. Jafari, Nematollahi, N., Shafie, K.: An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss.Statist. Prob. Letter 60 (2002), 434–444. MR 1947183
Reference: [7] Katz, W.: Admissible and minimax estimator of parameters in truncated space.Ann. Math. Statist. 32 (1961), 136–142. MR 0119287, 10.1214/aoms/1177705146
Reference: [8] Lehmann, E. L., Casella, G.: Theory of Point Estimation.Second edition. Springer-Verlag, John Wiley, New York 1998. Zbl 0916.62017, MR 1639875
Reference: [9] Moors, J. J. A.: Estimation in Truncated Parameter Spaces.Ph.D Thesis, Tilburg University Tilburg, The Netherlands 1985.
Reference: [10] Moors, J. J. A., Houwelingen, J. C. van: Estimation of linear models with inequality restrictions.Statist. Neerlandica 47 (1993), 185–198. MR 1243854, 10.1111/j.1467-9574.1993.tb01416.x
Reference: [11] Parsian, A., Nematollahi, N.: Estimation of scale parameter under entropy loss function.J. Statis. Plann. Infer. 52 (1996), 77–91. Zbl 0846.62021, MR 1391685, 10.1016/0378-3758(95)00026-7
Reference: [12] Pitman, E. J. J.: The estimation of location and scale parameters of a continuous population of any given form.Biometrika 30 (1938), 391–421.
Reference: [13] Pitman, E. J. J.: Some Basic Theory for Statistical Inference.Chapman Hall, London 1979. Zbl 0442.62002, MR 0549771
Reference: [14] Rahman, M. S., Gupta, R. P.: Family of transformed chi-square distributions.Comm. Statist. Theory Methods 22 (1993), 135–146. MR 1209502
Reference: [15] Robertson, T., Wright, F. T., Dijkstra, R. L.: Order Restricted Statistical Inference.John Wiley, New York 1988. MR 0961262
Reference: [16] Farsipour, N. Sanjari, Zakerzadeh, H.: Estimation of a gamma scale parameter under asymmetric squared-log error loss.Comm. Statist. Theory Methods 34 (2005), 1–9. MR 2189422
Reference: [17] Shao, P., Strawderman, W. E.: Improving on truncated linear estimates of exponential and gamma scale parameters.Canad. J. Statist. 24 (1996), 105–114. Zbl 0846.62006, MR 1394744, 10.2307/3315693
Reference: [18] Stein, C.: The admissibility of Pitman’s estimator for a single location parameter.Ann. Math. Statist. 30 (1959), 970–979. MR 0109392, 10.1214/aoms/1177706080
Reference: [19] Eeden, C. van: Minimax estimation of am lower-bounded scale parameter of a gamma distribution for scale invariant squared-error loss.Canada. J. Statist. 23 (1995), 245–256. MR 1363590, 10.2307/3315365
Reference: [20] Eeden, C. van: Minimax estimation of a lower-bounded scale-parameter of an F-distribution.Statist. Prob. Lett. 46 (2000), 283–286. 10.1016/S0167-7152(99)00114-5
Reference: [21] Eeden, C. van, Zidek, J. V.: Group-Bayes estimation of the exponential mean: A retrospective view of the wald theory.In: Statistical Decision Theory and Related Topics, V (S. S. Gupta and J. Berger, eds.), Springer, Berlin 1994, pp. 35–49. MR 1286293
Reference: [22] Eeden, C. van, Zidek, J. V.: Group-Bayes estimation of the exponential mean: A preposterior analysis.Test 3 (1994), 125–143. MR 1293111, 10.1007/BF02562677
Reference: [23] Eeden, C. van, Zidek, J. V.: Correction to Group-Bayes estimation of the exponential mean: A preposterior analysis.Test 3 (1994), 247. MR 1293111, 10.1007/BF02562705
.

Files

Files Size Format View
Kybernetika_47-2011-4_7.pdf 300.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo