Previous |  Up |  Next

Article

Title: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays (English)
Author: Hu, Jiangping
Author: Chen, Guanrong
Author: Li, Han-Xiong
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 4
Year: 2011
Pages: 630-643
Summary lang: English
.
Category: math
.
Summary: As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed dynamic tracking control is designed by employing event-triggered technique. Then, the input-to-state stability of the closed-loop multi-agent system with directed interconnections is analyzed. Finally, a numerical example is given to validate the proposed control. (English)
Keyword: leader-follower multi-agent system
Keyword: event-triggered control
Keyword: time-varying delay
Keyword: directed topology
MSC: 93A14
MSC: 93C10
idZBL: Zbl 1227.93008
idMR: MR2884865
.
Date available: 2011-09-23T11:30:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141663
.
Reference: [1] Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments.IEEE Trans. Control Systems Technol. 19 (2011), 929–938. 10.1109/TCST.2010.2053542
Reference: [2] Dimarogonas, D. V., Frazzoli, E.: Distributed event-triggered strategies for multi-agent systems.In: Proc. 47th Annual Allerton Conference on Communications, Control and Computing, Monticello 2009, pp. 906–910.
Reference: [3] Dimarogonas, D. V., Johansson, K. H.: Event-triggered control for multi-agent systems.In: Proc. IEEE CDC/CCC2009, Shanghai 2009, pp. 7131–7136.
Reference: [4] Eqtami, A., Dimarogonas, D. V., Kyriakopoulos, K. J.: Event-triggered control for discrete-time systems.In: Proc. American Control Conference, Baltimore 2010, pp. 4719–4724.
Reference: [5] Gao, Y., Wang, L.: Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements.Internat. J. Control 83 (2010), 552–562. Zbl 1222.93009, MR 2642904, 10.1080/00207170903297192
Reference: [6] Godsil, C., Royle, G.: Algebraic Graph Theory.Springer-Verlag, New York 2001. Zbl 0968.05002, MR 1829620
Reference: [7] Hale, J. K., Lunel, S. M. V.: Introduction to the Theory of Functional Differential Equations.Applied Mathematical Sciences, Springer, New York 1991.
Reference: [8] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology.Automatica 42 (2006), 1177–1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [9] Hu, J.: On robust consensus of multi-agent systems with communication time-delays.Kybernetika 45 (2009), 768–784. MR 2599111
Reference: [10] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement.Automatica 46 (2010), 1382–1387. Zbl 1204.93011, MR 2877254, 10.1016/j.automatica.2010.05.020
Reference: [11] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays.Physica A 374 (2007), 853–863. 10.1016/j.physa.2006.08.015
Reference: [12] Kingston, D. B., Ren, W., Beard, R.: Consensus algorithms are inputto-state stable.In: Proc. American Control Conference 2005, pp. 1686–1690.
Reference: [13] Li, T., Zhang, J.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions.Automatica 45 (2009), 1929–1936. Zbl 1185.93006, MR 2879518, 10.1016/j.automatica.2009.04.017
Reference: [14] Liu, Z., Chen, Z.: Event-triggered average-consensus for multi-agent systems.In: Proc. 29th Chinese Control Conference, Beijing 2010, pp. 4506–4511.
Reference: [15] Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: an H-infinity analysis approach.Internat. J. Robust Nonlinear Control 20 (2010), 1579–1593. MR 2724254, 10.1002/rnc.1531
Reference: [16] Moreau, L.: Stability of multiagent systems with time-dependent communication links.IEEE Trans. Automat. Control 50 (2005), 169–182. MR 2116423, 10.1109/TAC.2004.841888
Reference: [17] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Automat. Control 49 (2004), 1520–1533. MR 2086916, 10.1109/TAC.2004.834113
Reference: [18] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies.Automatica 45 (2009), 1165–1175. Zbl 1162.93308, MR 2531590, 10.1016/j.automatica.2008.12.015
Reference: [19] Sontag, E. D.: Input to state stability: basic concepts and results.In: Proc. CIME Summer Course on Nonlinear and Optimal Control Theory 2004, pp. 462–488.
Reference: [20] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks.IEEE Trans. Automat. Control 52 (2007), 1680–1685. MR 2352444, 10.1109/TAC.2007.904277
Reference: [21] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems.IEEE Trans. Automat. Control 55 (2010), 2891–2895. MR 2767160, 10.1109/TAC.2010.2076250
Reference: [22] Wang, X., Lemmon, M. D.: Event-triggering in distributed networked control systems.IEEE Trans. Automat. Control 56 (2011), 586–601. MR 2799075, 10.1109/TAC.2010.2057951
.

Files

Files Size Format View
Kybernetika_47-2011-4_9.pdf 341.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo