Previous |  Up |  Next

Article

Title: Generalized Birkhoffian realization of nonholonomic systems (English)
Author: Guo, Yong-Xin
Author: Liu, Chang
Author: Liu, Shi-Xing
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 18
Issue: 1
Year: 2010
Pages: 21-35
Summary lang: English
.
Category: math
.
Summary: Based on the Cauchy-Kowalevski theorem for a system of partial differential equations to be integrable, a kind of generalized Birkhoffian systems (GBSs) with local, analytic properties are put forward, whose manifold admits a presymplectic structure described by a closed 2-form which is equivalent to the self-adjointness of the GBSs. Their relations with Birkhoffian systems, generalized Hamiltonian systems are investigated in detail. Analytic, algebraic and geometric properties of GBSs are formulated, together with their integration methods induced from the Birkhoffian systems. As an important example, nonholonomic systems are reduced into GBSs, which gives a new approach to some open problems of nonholonomic mechanics. (English)
MSC: 70F17
MSC: 70F25
MSC: 70G45
idZBL: Zbl 1253.70016
idMR: MR2848504
.
Date available: 2011-10-25T07:15:47Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141670
.
Reference: [1] Bloch, A.M., Fernandez, O.E., Mestdag, T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations.Rep. Math. Phys. 63 2009 225–249 Zbl 1207.37045, MR 2519467, 10.1016/S0034-4877(09)90001-5
Reference: [2] Bloch, A.M., Baillieul, J., Crouch, P., Marsden J.: Nonholonomic Mechanics and Control.Springer, London 2003 Zbl 1045.70001, MR 1978379
Reference: [3] Cortes, J.M.: Geometric, Control and Numerical Aspects of Nonholonomic Systems.Springer, Berlin 2002 Zbl 1009.70001, MR 1942617
Reference: [4] Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulation of nonholonomic constrained systems.Rep. Math. Phys. 47 2001 313–322 MR 1847630, 10.1016/S0034-4877(01)80046-X
Reference: [5] Hojman, S.: Construction of genotopic transformations for first order systems of differential equations.Hadronic J. 5 1981 174–184 Zbl 0515.70022, MR 0642608
Reference: [6] Ibort, L.A., Solano, J.M.: On the inverse problem of the calculus of variations for a class of coupled dynamical systems.Inverse Problems 7 1991 713–725 Zbl 0756.34019, MR 1128637, 10.1088/0266-5611/7/5/005
Reference: [7] Krupková, O., Musilová, J.: Non-holonomic variational systems.Rep. Math. Phys. 55 2005 211–220 10.1016/S0034-4877(05)80028-X
Reference: [8] Li, J.B., Zhao, X.H., Liu, Z.R.: Theory of Generalized Hamiltonian Systems and Its Applications.Science Press of China Beijing 2007
Reference: [9] Liu, C., Liu, S.X., Guo, Y.X.: Inverse problem for Chaplygin’s nonholonomic.Sci. Chin. G 53 2010 (to appear)
Reference: [10] Massa, E., Pagani, E.: Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics.Ann. Inst. Henri Poincaré: Phys. Theor. 61 1994 17–62 Zbl 0813.70004, MR 1303184
Reference: [11] Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian systems.Press of Beijing Institute of Technology Beijing 1996 (in Chinese)
Reference: [12] Morando, P., Vignolo, S.: A geometric approach to constrained mechanical systems, symmetries and inverse problems.J. Phys. A: Math. Gen. 31 1998 8233–8245 Zbl 0940.70008, MR 1651497, 10.1088/0305-4470/31/40/015
Reference: [13] Santilli, R.M.: Foundations of Theoretical Mechanics I.Springer-Verlag, New York 1978 Zbl 0401.70015, MR 0514210
Reference: [14] Santilli, R.M.: Foundations of Theoretical Mechanics II.Springer-Verlag, New York 1983 Zbl 0536.70001, MR 0681293
Reference: [15] Sarlet, W.: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics.J. Phys. A: Math. Gen. 15 1982 1503–1517 Zbl 0537.70018, MR 0656831, 10.1088/0305-4470/15/5/013
Reference: [16] Sarlet, W., Cantrijn, F., Saunders, D.J.: A differential geometric setting for mixed first- and second-order ordinary differential equations.J. Phys. A: Math. Gen. 30 1997 4031–4052 Zbl 0932.37040, MR 1457421, 10.1088/0305-4470/30/11/029
Reference: [17] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems.J. Phys. A: Math. Gen. 28 1995 3253–3268 Zbl 0858.70013, MR 1344117, 10.1088/0305-4470/28/11/022
Reference: [18] Sarlet, W., Thompson, G., Prince, G.E.: The inverse problem in the calculus of variations: the use of geometrical calculus in Douglas’s analysis.Trans. Amer. Math. Soc. 354 2002 2897–2919 MR 1895208, 10.1090/S0002-9947-02-02994-X
Reference: [19] Saunders, D.J., Sarlet, W., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II.J. Phys. A: Math. Gen. 29 1996 4265–4274 Zbl 0900.70196, MR 1406933, 10.1088/0305-4470/29/14/042
.

Files

Files Size Format View
ActaOstrav_18-2010-1_3.pdf 357.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo