Previous |  Up |  Next

Article

Title: Estimators of the asymptotic variance of stationary point processes - a comparison (English)
Author: Prokešová, Michaela
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 5
Year: 2011
Pages: 678-695
Summary lang: English
.
Category: math
.
Summary: We investigate estimators of the asymptotic variance $\sigma^2$ of a $d$–dimensional stationary point process $\Psi$ which can be observed in convex and compact sampling window $W_n=n\, W$. Asymptotic variance of $\Psi$ is defined by the asymptotic relation ${Var}(\Psi(W_n)) \sim \sigma^2 |W_n|$ (as $n \to \infty$) and its existence is guaranteed whenever the corresponding reduced covariance measure $\gamma^{(2)}_{{\rm red}}(\cdot)$ has finite total variation. The three estimators discussed in the paper are the kernel estimator, the estimator based on the second order intesity of the point process and the subsampling estimator. We study the mean square consistency of the estimators. Since the expressions for the variance of the estimators are not available in closed form and depend on higher order moment measures of the point process, only the bias of the estimators can be compared theoretically. The second part of the paper is therefore devoted to a simulation study which compares the efficiency of the estimators by means of the mean squared error and for several clustered and repulsive point processes observed on middle-sized windows. (English)
Keyword: reduced covariance measure
Keyword: factorial moment and cumulant measures
Keyword: kernel-type estimator
Keyword: subsampling
Keyword: mean squared error
Keyword: Poisson cluster process
Keyword: hard-core process
MSC: 60G55
MSC: 62F12
idZBL: Zbl 1238.62098
idMR: MR2850456
.
Date available: 2011-11-10T15:34:29Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141684
.
Reference: [1] S. Böhm, L. Heinrich, V. Schmidt: Kernel estimation of the spectral density of stationary random closed sets..Austral. & New Zealand J. Statist. 46 (2004), 41-52. Zbl 1061.62057, MR 2060951, 10.1111/j.1467-842X.2004.00310.x
Reference: [2] K. L. Chung: A Course in Probability Theory..Second edition. Harcourt Brace Jovanovich, New York 1974. Zbl 0345.60003, MR 0346858
Reference: [3] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes..Second edition. Vol I and II, Springer, New York 2003, 2008. Zbl 1026.60061, MR 0950166
Reference: [4] S. David: Central Limit Theorems for Empirical Product Densities of Stationary Point Processes..Phd. Thesis, Augsburg Universität 2008.
Reference: [5] L. Heinrich: Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes..Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075
Reference: [6] L. Heinrich: Normal approximation for some mean-value estimates of absolutely regular tesselations..Math. Methods Statist. 3 (1994), 1-24. MR 1272628
Reference: [7] L. Heinrich: Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions..Submitted.
Reference: [8] L. Heinrich, E. Liebscher: Strong convergence of kernel estimators for product densities of absolutely regular point processes..J. Nonparametric Statist. 8 (1997), 65-96. Zbl 0884.60041, MR 1658113, 10.1080/10485259708832715
Reference: [9] L. Heinrich, M. Prokešová: On estimating the asymptotic variance of stationary point processes..Methodology Comput. in Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3
Reference: [10] L. Heinrich, V. Schmidt: Normal convergence of multidimensional shot noise and rates of this convergence..Adv. in Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.2307/1427084
Reference: [11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan: Statistical Analysis and Modelling of Spatial Point Patterns..John Wiley and Sons, Chichester 2008. Zbl 1197.62135, MR 2384630
Reference: [12] E. Jolivet: Central limit theorem and convergence of empirical processes of stationary point processes..In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161. MR 0617406
Reference: [13] S. Mase: Asymptotic properties of stereological estimators for stationary random sets..J. Appl. Probab. 19 (1982), 111-126. MR 0644424, 10.2307/3213921
Reference: [14] D. N. Politis: Subsampling..Springer, New York 1999. Zbl 1072.62551, MR 1707286
Reference: [15] D. N. Politis, M. Sherman: Moment estimation for statistics from marked point processes..J. Roy. Statist. Soc. Ser. B 63 (2001), 261-275. Zbl 0979.62074, MR 1841414, 10.1111/1467-9868.00284
Reference: [16] M. Prokešová, E. B. Vedel-Jensen: Asymptotic Palm likelihood theory for stationary point processes..Submitted.
Reference: [17] B. D. Ripley: Statistical Inference for Spatial Processes..Cambridge University Press, Cambridge 1988. Zbl 0716.62100, MR 0971986
Reference: [18] D. Stoyan, W. S. Kendall, J. Mecke: Stochastic Geometry and its Applications..Second edition. J. Wiley & Sons, Chichester 1995. Zbl 0838.60002, MR 0895588
Reference: [19] J. C. Taylor: An Introduction to Measure and Probability..Springer, New York 1997. MR 1420194
Reference: [20] L. Zhengyan, L. Chuanrong: Limit Theory for Mixing Dependent Random Variables..Kluwer Academic Publishers, Dordrecht 1996. Zbl 0889.60001, MR 1486580
.

Files

Files Size Format View
Kybernetika_47-2011-5_2.pdf 363.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo