Previous |  Up |  Next

Article

Title: Homogenized double porosity models for poro-elastic media with interfacial flow barrier (English)
Author: Ainouz, Abdelhamid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 357-365
Summary lang: English
.
Category: math
.
Summary: In the paper a Barenblatt-Biot consolidation model for flows in periodic porous elastic media is derived by means of the two-scale convergence technique. Starting with the fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic medium separated by a periodic interfacial barrier, described by the Biot model of consolidation with the Deresiewicz-Skalak interface boundary condition and assuming that the period is too small compared with the size of the medium, the limiting behavior of the coupled deformation-pressure is studied. (English)
Keyword: homogenization
Keyword: porelasticity
Keyword: two-scale convergence
MSC: 35B27
MSC: 35Q35
MSC: 74Q05
MSC: 76M50
idZBL: Zbl 1249.35016
idMR: MR2985545
DOI: 10.21136/MB.2011.141695
.
Date available: 2011-11-10T15:48:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141695
.
Reference: [1] Ainouz, A.: Derivation of a convection process in a steady diffusion-transfer problem by homogenization.Int. J. Appl. Math. 21 (2008), 83-97. Zbl 1144.35329, MR 2408055
Reference: [2] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-15192. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [3] Allaire, G., Damlamian, A., Hornung, U.: Two scale convergence on periodic surfaces and applications.Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995) A. Bourgeat et al. (1996), 15-25 World Scientific Singapore.
Reference: [4] Barenblatt, G., Zheltov, Y., Kochina, I.: On basic concepts of the theory of homogeneous fluids seepage in fractured rocks.Russian Prikl. Mat. Mekh. 24 (1960), 852-864.
Reference: [5] Biot, M.: General theory of the three-dimensional consolidation.J. Appl. Physics 12 (1941), 155-164. 10.1063/1.1712886
Reference: [6] Biot, M., Willis, D.: The elasticity coefficients of the theory of consolidation.J. Appl. Mech. 24 (1957), 594-601. MR 0092472
Reference: [7] Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasicity.Bull. Seismol. Soc. Amer. 53 (1963), 783-788.
Reference: [8] Ene, H., Poliševski, D.: Model of diffusion in partially fissured media.Z. Angew. Math. Phys. 53 (2002), 1052-1059. Zbl 1017.35016, MR 1963553, 10.1007/PL00013849
Reference: [9] Showalter, R., Momken, B.: Single-phase flow in composite poroelastic media.Math. Methods Appl. Sci. 25 (2002), 115-139. Zbl 1097.35067, MR 1879654, 10.1002/mma.276
Reference: [10] Wilson, R., Aifantis, E.: On the theory of consolidation with double porosity.Int. J. Eng. Sci. 20 (1982), 1009-1035. Zbl 0493.76094, 10.1016/0020-7225(82)90036-2
.

Files

Files Size Format View
MathBohem_136-2011-4_2.pdf 244.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo