Previous |  Up |  Next

Article

Title: Hilbert inequality for vector valued functions (English)
Author: Das, Namita
Author: Sahoo, Srinibas
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 3
Year: 2011
Pages: 229-243
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a class of Hankel operators with operator valued symbols on the Hardy space ${ \mathcal{H}}_{\Xi }^2(\mathbb{T})$ where $\Xi $ is a separable infinite dimensional Hilbert space and showed that these operators are unitarily equivalent to a class of integral operators in $L^2(0, \infty )\otimes \Xi .$ We then obtained a generalization of Hilbert inequality for vector valued functions. In the continuous case the corresponding integral operator has matrix valued kernels and in the discrete case the sum involves inner product of vectors in the Hilbert space $\Xi $. (English)
Keyword: Hardy-Hilbert’s integral inequality
Keyword: $\beta $-function
Keyword: Hölder’s inequality
MSC: 26D15
idZBL: Zbl 1249.26033
idMR: MR2852383
.
Date available: 2011-11-11T08:53:35Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141709
.
Reference: [1] Bercovici, H.: Operator theory and arithmetic in $H^{\infty }$.no. 26, Math. Surveys Monogr., 1988. MR 0954383
Reference: [2] Duren, P. L.: Theory of $\mathcal{H}^p$ Spaces.Academic Press, New York, 1970. MR 0268655
Reference: [3] Hardy, G. H.: Note on a theorem of Hilbert concerning series of positive terms.Proc. London Math. Soc. 23 (2) (1925), 45–46.
Reference: [4] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.Cambridge University Press, Cambridge, 1952. Zbl 0047.05302, MR 0046395
Reference: [5] Kostrykin, V., Makarov, K. A.: On Krein’s example.arXiv:math/0606249v1 [math.SP], 10 June 2006. Zbl 1143.47019, MR 2383512
Reference: [6] Mintrinovic, D. S., Pecaric, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives.Kluwer Academic Publishers, Boston, 1991. MR 1190927
Reference: [7] Partington, J. R.: An introduction to Hankel operator.vol. 13, London Math. Soc. Stud. Texts, 1988. MR 0985586
Reference: [8] Power, S. C.: Hankel operators on Hilbert space.Bull. London Math. Soc. 12 (1980), 422–442. Zbl 0446.47015, MR 0593961, 10.1112/blms/12.6.422
.

Files

Files Size Format View
ArchMathRetro_047-2011-3_5.pdf 541.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo