Title:
|
Complex Oscillation Theory of Differential Polynomials (English) |
Author:
|
El Farissi, Abdallah |
Author:
|
Belaïdi, Benharrat |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
43-52 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we investigate the relationship between small functions and differential polynomials $g_{f}(z)=d_{2}f^{\prime \prime }+d_{1}f^{\prime }+d_{0}f$, where $d_{0}(z)$, $d_{1}(z)$, $d_{2}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)<1$ $(j=0,1,2) $ generated by solutions of the differential equation $f^{\prime \prime }+A_{1}(z) e^{az}f^{\prime }+A_{0}(z) e^{bz}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_{j}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace <1.$ (English) |
Keyword:
|
linear differential equations |
Keyword:
|
differential polynomials |
Keyword:
|
entire solutions |
Keyword:
|
order of growth |
Keyword:
|
exponent of convergence of zeros |
Keyword:
|
exponent of convergence of distinct zeros |
MSC:
|
30D35 |
MSC:
|
34M10 |
idZBL:
|
Zbl 1244.34108 |
idMR:
|
MR2920698 |
. |
Date available:
|
2011-12-08T09:47:45Z |
Last updated:
|
2013-09-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141721 |
. |
Reference:
|
[1] Amemiya, I., Ozawa, M.: Non-existence of finite order solutions of $w^{\prime \prime }+e^{-z}w^{\prime }+Q(z) w=0$. Hokkaido Math. J. 10 (1981), 1–17 (special issue). MR 0662294 |
Reference:
|
[2] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesnik 60, 4 (2008), 233–246. MR 2465805 |
Reference:
|
[3] Belaïdi, B.: Oscillation of fixed points of solutions of some linear differential equations. Acta Math. Univ. Comenian. (N.S.) 77, 2 (2008), 263–269. Zbl 1174.34528, MR 2489196 |
Reference:
|
[4] Belaïdi, B., El Farissi, A.: Relation between differential polynomials and small functions. Kyoto J. Math. Vol. 50, 2 (2010), 453–468. Zbl 1203.34148, MR 2666664, 10.1215/0023608X-2009-019 |
Reference:
|
[5] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis 14 (1994), 425–438. Zbl 0815.34003, MR 1310623 |
Reference:
|
[6] Chen, Z. X.: The fixed points and hyper-order of solutions of second order complex differential equations. (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20, 3 (2000), 425–432. Zbl 0980.30022, MR 1792926 |
Reference:
|
[7] Chen, Z. X.: The growth of solutions of $f^{\prime \prime }+e^{-z}f^{\prime }+Q(z)f=0$ where the order $(Q) =1$. Sci. China Ser. A 45, 3 (2002), 290–300. MR 1903625 |
Reference:
|
[8] Chen, Z. X., Shon, K. H.: On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients. Acta Math. Sin. (Engl. Ser.) 21, 4 (2005), 753–764. Zbl 1100.34067, MR 2156950, 10.1007/s10114-004-0434-z |
Reference:
|
[9] Frei, M.: Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten. Comment. Math. Helv. 35 (1961), 201–222. Zbl 0115.06903, MR 0126008, 10.1007/BF02567016 |
Reference:
|
[10] Frei, M.: Über die Subnormalen Lösungen der Differentialgleichung $w^{\prime \prime }+e^{-z}w^{\prime }+( Konst.) w=0$. Comment. Math. Helv. 36 (1961), 1–8. Zbl 0115.06904, MR 0151657, 10.1007/BF02566887 |
Reference:
|
[11] Gundersen, G. G.: On the question of whether $f^{\prime \prime }+e^{-z}f^{\prime }+B(z) f=0$ can admit a solution $f\lnot \equiv 0$ of finite order. Proc. Roy. Soc. Edinburgh Sect. A 102, 1-2 (1986), 9–17. MR 0837157 |
Reference:
|
[12] Hayman, W. K.: Meromorphic functions. Clarendon Press, Oxford, 1964. Zbl 0115.06203, MR 0164038 |
Reference:
|
[13] Laine, I., Rieppo, J.: Differential polynomials generated by linear differential equations. Complex Var. Theory Appl. 49, 12 (2004), 897–911. Zbl 1080.34076, MR 2101213, 10.1080/02781070410001701092 |
Reference:
|
[14] Langley, J. K.: On complex oscillation and a problem of Ozawa. Kodai Math. J. 9, 3 (1986), 430–439. Zbl 0609.34041, MR 0856690, 10.2996/kmj/1138037272 |
Reference:
|
[15] Levin, B. Ya.: Lectures on entire functions. American Mathematical Society, Providence, RI, 1996 Translations of Mathematical Monographs, Vol. 150. Zbl 0856.30001, MR 1400006 |
Reference:
|
[16] Liu, M. S., Zhang, X. M.: Fixed points of meromorphic solutions of higher order Linear differential equations. Ann. Acad. Sci. Fenn. Math. 31, 1 (2006), 191–211. Zbl 1094.30036, MR 2210116 |
Reference:
|
[17] Nevanlinna, R.: Eindeutige analytische Funktionen. Die Grundlehren der mathematischen Wissenschaften Band 46, Zweite Auflage, Reprint, Springer-Verlag, Berlin–New York, 1974. Zbl 0278.30002, MR 0344426 |
Reference:
|
[18] Ozawa, M.: On a solution of $w^{\prime \prime }+e^{-z}w^{\prime }+( az+b) w=0$. Kodai Math. J. 3, 2 (1980), 295–309. MR 0588459, 10.2996/kmj/1138036197 |
Reference:
|
[19] Wang, J., Yi, H. X.: Fixed points and hyper order of differential polynomials generated by solutions of differential equation. Complex Var. Theory Appl. 48, 1 (2003), 83–94. Zbl 1071.30029, MR 1953763, 10.1080/0278107021000037048 |
Reference:
|
[20] Wang, J., Laine, I.: Growth of solutions of second order linear differential equations. J. Math. Anal. Appl. 342, 1 (2008), 39–51. Zbl 1151.34069, MR 2440778, 10.1016/j.jmaa.2007.11.022 |
Reference:
|
[21] Zhang, Q. T., Yang, C. C.: The Fixed Points and Resolution Theory of Meromorphic Functions. Beijing University Press, Beijing, 1988 (in Chinese). |
. |