Previous |  Up |  Next

Article

Title: Randomized goodness of fit tests (English)
Author: Liese, Friedrich
Author: Liu, Bing
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 6
Year: 2011
Pages: 814-839
Summary lang: English
.
Category: math
.
Summary: Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality. (English)
Keyword: goodness of fit tests with estimated parameters
Keyword: Kolmogorov–Smirnov test
Keyword: Cramér–von Mises test
Keyword: randomization
MSC: 62E20
MSC: 64E17
idZBL: Zbl 06047588
idMR: MR2907844
.
Date available: 2011-12-08T09:55:52Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141727
.
Reference: [1] Billingsley, P.: Covergence of Probability Measures.Wiley, New York 1986. MR 0233396
Reference: [2] Bowman, K. O., Shenton, L. R.: Omnibus test contours for departures from normality based on $\sqrt{b_{1}}$ and $b_{2}$. Biometrica 62 (1975), 243-250. Zbl 0308.62016, MR 0381079
Reference: [3] Csörgő, S., Faraway, J. J.: The exact and asymptotic distributions of Cramér–von Mises statistics.J. Roy. Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 221–234. MR 1379239
Reference: [4] D’Agostino, R. B., Stephens, M. A.: Goodness-of-fit Techniques.Marcel Decker, New York and Basel 1986. MR 0874534
Reference: [5] Durbin, J.: Distribution theory for tests based on the sample distribution function. Regional Conference Series in Applied Mathematics 9, SIAM, Philadelphia 1973. Zbl 0267.62002, MR 0305507
Reference: [6] Durbin, J.: Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1 (1973), 279–290. Zbl 0256.62021, MR 0359131, 10.1214/aos/1176342365
Reference: [7] Genz, M., Haeusler, E.: Empirical processes with estimated parameters under auxiliary information. J. Comput. Appl. Math. 186 (2006), 191–216. Zbl 1073.62044, MR 2190305, 10.1016/j.cam.2005.03.070
Reference: [8] Haywood, J., Khmaladze, E.: On distribution-free goodness-of-fit tetsting of exponentiality. Econometrics 143 (2008), 5–18. MR 2384430, 10.1016/j.jeconom.2007.08.005
Reference: [9] Janssen, A.: Asymptotic relative efficiency of tests at the boundary of regular statistical modells. J. Statist. Plann. Inference 126 (2004), 461–477. MR 2088753, 10.1016/j.jspi.2003.09.006
Reference: [10] Khmaladze, E.: Martingale approach in the theory of goodness of fit tests.Theory Probab. Appl. 24 (1981), 2, 283–302. Zbl 0454.60049
Reference: [11] Liese, F., Miescke, K. J.: Statistical Decision Theory, Estimation, Testing and Selection. Springer-Verlag, New York 2008. Zbl 1154.62008, MR 2421720
Reference: [12] Matsumoto, M., Nishimura, T.: Mersenne-Twister: A 623-dimensionally equidistributed uniform pseudo-random generator.ACM Trans. Model. Comp. Simul. 8 (1998), 19, 3–30. 10.1145/272991.272995
Reference: [13] Pollard, D.: Convergence of Stochastic Processes. Springer-Verlag, New York 1984. Zbl 0544.60045, MR 0762984
Reference: [14] Shapiro, S. S., Francia, R. S.: Approximate analysis of variance test for normality.J. Amer. Statist. Assoc. 67 (1972), 215–216. 10.1080/01621459.1972.10481232
Reference: [15] Shorack, G., Wellner, J. A.: Empirical Processes with Applications to Statistics. Wiley, New York 1986. Zbl 1170.62365, MR 0838963
Reference: [16] Stephens, M. A.: EDF statistics for goodness of fit and some comparisons. J. Amer. Statist. Assoc. 69 (1974), 730–737. 10.1080/01621459.1974.10480196
Reference: [17] Stephens, M. A.: Goodness of fit for the extreme value distribution. Biometrika 64 (1976), 583–588. MR 0488478, 10.1093/biomet/64.3.583
Reference: [18] Stute, W., Manteiga, W. G., Quindimil, M. P.: Bootstrap based goodness-of-fit-tests.Metrika 40 (1993), 243–256. Zbl 0770.62016, MR 1235086, 10.1007/BF02613687
Reference: [19] Vaart, A. W. van der, Wellner, J. A.: Weak convergence and Empirical Processes.With Applications to Statstics. Second edition 2000. Springer, New York 1996. MR 1385671
Reference: [20] Vaart, A. W. van der: Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press. 1998. MR 1652247
.

Files

Files Size Format View
Kybernetika_47-2011-6_2.pdf 998.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo