Previous |  Up |  Next

Article

Title: A game and its relation to netweight and D-spaces (English)
Author: Gruenhage, Gary
Author: Szeptycki, Paul
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 561-568
Summary lang: English
.
Category: math
.
Summary: We introduce a two player topological game and study the relationship of the existence of winning strategies to base properties and covering properties of the underlying space. The existence of a winning strategy for one of the players is conjectured to be equivalent to the space have countable network weight. In addition, connections to the class of D-spaces and the class of hereditarily Lindelöf spaces are shown. (English)
Keyword: topological game
Keyword: network
Keyword: netweight
Keyword: weakly separated
Keyword: $D$-space
MSC: 54D20
MSC: 54E20
idZBL: Zbl 1249.54052
idMR: MR2863999
.
Date available: 2011-12-16T13:56:25Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/141743
.
Reference: [1] Aurichi L.: D-spaces, topological games and selection principles.Topology Proc. 36 (2010), 107–122. Zbl 1203.54024, MR 2591778
Reference: [2] Abraham U., Shelah S.: Martin's Axiom does not imply that every two ${\aleph _1}$-dense sets of reals are isomorphic.Israel J. Math. 38 (1981), 161–176. MR 0599485, 10.1007/BF02761858
Reference: [3] Ciesielski K.: On the netweight of subspaces.Fund. Math. 117 (1983), no. 1, 37–46. Zbl 0533.54003, MR 0712211
Reference: [4] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), no. 2, 371–377. Zbl 0409.54011, MR 0547605, 10.2140/pjm.1979.81.371
Reference: [5] Gruenhage G.: Cosmicity of cometrizable spaces.Trans. Amer. Math. Soc. 313 (1989), 301–315. Zbl 0667.54012, MR 0992600, 10.1090/S0002-9947-1989-0992600-5
Reference: [6] Gruenhage G.: A survey of D-spaces.Contemporary Mathematics 533 (2011), 13–28. Zbl 1217.54025, MR 2777743, 10.1090/conm/533/10502
Reference: [7] Gruenhage G., Moore J.: Perfect compacta and basis problems in topology.in Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 151–159.
Reference: [8] Soukup D., Szeptycki P.J.: A counterexample in the theory of D-spaces.preprint.
Reference: [9] Tkachenko M.G.: Chains and cardinals.Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546–549; English translation: Soviet Math. Dokl. 19 (1978), 382–385. Zbl 0404.54002, MR 0500798
Reference: [10] Todorcevic S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. Zbl 0659.54001, MR 0980949, 10.1090/conm/084
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_8.pdf 491.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo