Previous |  Up |  Next

Article

Title: Optimal Convective Heat-Transport (English)
Author: Dalík, Josef
Author: Přibyl, Oto
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 13-18
Summary lang: English
.
Category: math
.
Summary: The one-dimensional steady-state convection-diffusion problem for the unknown temperature $y(x)$ of a medium entering the interval $(a,b)$ with the temperature $y_{\min }$ and flowing with a positive velocity $v(x)$ is studied. The medium is being heated with an intensity corresponding to $y_{\max }-y(x)$ for a constant $y_{\max }>y_{\min }$. We are looking for a velocity $v(x)$ with a given average such that the outflow temperature $y(b)$ is maximal and discuss the influence of the boundary condition at the point $b$ on the “maximizing” function $v(x)$. (English)
Keyword: convective heat-transport
Keyword: two-point convection-diffusion boundary-value problem
Keyword: optimization of the amount of heat
MSC: 34B05
MSC: 65L10
idZBL: Zbl 1244.76022
idMR: MR2920704
.
Date available: 2011-12-16T14:42:32Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141749
.
Reference: [1] Deuflhard, P., Weiser, M.: Numerische Matematik 3, Adaptive Lösung partieller Differentialgleichungen. De Gruyter, Berlin, 2011. MR 2779847
Reference: [2] Ferziger, J. H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin, 2002, 3rd Edition. Zbl 0998.76001, MR 1384758
Reference: [3] Kamke, E.: Handbook on Ordinary Differential Equations. Nauka, Moscow, 1971, (in Russian).
Reference: [4] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin, 1996. Zbl 0844.65075, MR 1477665
.

Files

Files Size Format View
ActaOlom_50-2011-2_2.pdf 229.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo