Previous |  Up |  Next

Article

Title: Some Diagnostic Tools in Robust Econometrics (English)
Author: Kalina, Jan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 55-67
Summary lang: English
.
Category: math
.
Summary: Highly robust statistical and econometric methods have been developed not only as a diagnostic tool for standard methods, but they can be also used as self-standing methods for valid inference. Therefore the robust methods need to be equipped by their own diagnostic tools. This paper describes diagnostics for robust estimation of parameters in two econometric models derived from the linear regression. Both methods are special cases of the generalized method of moments estimator based on implicit weighting of individual observations. This has the effect of down-weighting less reliable observations and ensures a high robustness and low sub-sample sensitivity of the methods. Firstly, for a robust regression method efficient under heteroscedasticity we derive the Durbin–Watson test of independence of random regression errors, which is based on the approximation to the exact null distribution of the test statistic. Secondly we study the asymptotic behavior of the Durbin–Watson test statistic for the weighted instrumental variables estimator, which is a robust analogy of the classical instrumental variables estimator. (English)
Keyword: robust regression
Keyword: autocorrelated errors
Keyword: heteroscedastic regression
Keyword: instrumental variables
Keyword: least weighted squares
MSC: 62G35
MSC: 62J20
MSC: 62P20
idZBL: Zbl 1244.91072
idMR: MR2920708
.
Date available: 2011-12-16T14:48:46Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141754
.
Reference: [1] Aitken, A. C.: On least squares and linear combination of observations. Proc. Roy. Statist. Soc. 55 (1935), 42–48. Zbl 0011.26603
Reference: [2] Čížek, P.: Efficient robust estimation of time-series regression models. Appl. Math. 53 (2008), 267–279. Zbl 1189.62140, MR 2411129, 10.1007/s10492-008-0009-x
Reference: [3] Cohen-Freue, G. V., Zamar, R. H.: A robust instrumental variables estimator. J. Roy. Statist. Soc. (2011), (submitted).
Reference: [4] Cragg, J. G.: More efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica 51 (1938), 751–763. MR 0712368, 10.2307/1912156
Reference: [5] Durbin, J., Watson, G. S.: Testing for serial correlation in least squares regression I. Biometrika 37 (1950), 409–428. Zbl 0039.35803, MR 0039210
Reference: [6] Durbin, J., Watson, G. S.: Testing for serial correlation in least squares regression II. Biometrika 38 (1951), 159–178. Zbl 0042.38201, MR 0042662
Reference: [7] Farebrother, R. W.: Pan’s procedure for the tail probabilities of the Durbin-Watson statistic. Appl. Stat. 29 (1980), 224–227. Zbl 0475.62044, 10.2307/2986316
Reference: [8] Gagliardini, P., Trojani, F., Urga, G.: Robust GMM tests for structural breaks. Journal of Econometrics 129 (2005), 139–182. MR 2209661, 10.1016/j.jeconom.2004.09.006
Reference: [9] Greene, W. H.: Econometric analysis. Macmillan, New York, 2002, Fifth edition.
Reference: [10] Hansen, L. P.: Large samples properties of generalized method of moments estimators. Econometrica 50 (1982), 1029–1054. MR 0666123, 10.2307/1912775
Reference: [11] Hekimoglu, S., Erenoglu, R. C., Kalina, J.: Outlier detection by means of robust regression estimators for use in engineering science. Journal of Zhejiang University Science A 10 (2009), 909–921. Zbl 1178.62015, 10.1631/jzus.A0820140
Reference: [12] Jurečková, J., Picek, J.: Robust statistical methods with R. Chapman & Hall/CRC, Boca Raton, 2006. Zbl 1097.62020, MR 2191689
Reference: [13] Jurečková, J., Sen, P. K.: Robust statistical procedures. Asymptotics and interrelations. Wiley, New York, 1996. MR 1387346
Reference: [14] Kalina, J.: On multivariate methods in robust econometrics. Prague economic papers 2011, (accepted, in print).
Reference: [15] Kalina, J.: Robust image analysis of faces for genetic applications. Eur. J. Biomed. Inf. 6, 2 (2010), 6–13.
Reference: [16] Kalina, J.: Asymptotic Durbin-Watson test for robust regression. Bull. Int. Statist. Inst. 62 (2007), 3406–3409.
Reference: [17] Ortelli, C., Trojani, F.: Robust efficient method of moments. Journal of Econometrics 128 (2005), 69–97. MR 2022927, 10.1016/j.jeconom.2004.08.008
Reference: [18] Rao, C. R.: Linear methods of statistical induction and their applications. Wiley, New York, 1973, Second edition. MR 0346957
Reference: [19] Rousseuw, P. J., Leroy A. M.: Robust regression and outlier detection. Wiley, New York, 1987. MR 0914792
Reference: [20] Rousseeuw, P. J., van Driessen, K.: Computing LTS regression for large data sets. Data Mining and Knowledge Discovery 12 (2006), 29–45. MR 2225526, 10.1007/s10618-005-0024-4
Reference: [21] Sakata, S., White, H.: S-estimation of nonlinear regression models with dependent and heterogeneous observations. Journal of Econometrics 103 (2001), 5–72. Zbl 0998.62060, MR 1838195, 10.1016/S0304-4076(01)00039-2
Reference: [22] Víšek, J. Á.: Robust error-term-scale estimate. In: Antoch, J., Hušková, M., Sen, P. K. (eds.) Nonparametrics and robustness in modern statistical inference and time series analysis, IMS Collections 7, Institute of Mathematical Statistics, Beachwood, Ohio, 2010, 254–267. MR 2808385
Reference: [23] Víšek, J. Á.: Instrumental weighted variables. Austrian J. Statist. 35 (2006), 379–387.
Reference: [24] Víšek, J. Á.: Robustifying generalized method of moments. In: Kupka, K. (ed.) Data analysis 2004/II, Progressive methods of statistical data analysis and modelling for research and technical practice, Trilobyte Statistical Software, Pardubice, 2005, 171–193.
Reference: [25] Víšek, J. Á.: Regression with high breakdown point. In: Antoch, J., Dohnal, G. (eds.) Proceedings of ROBUST 2000, Summer School of JČMF, JČMF and Czech Statistical Society, 2001, 324–356.
Reference: [26] Wooldridge, J. M.: Applications of generalized method of moments estimation. J. Econ. Perspect. 15, 4 (2001), 87–100. 10.1257/jep.15.4.87
.

Files

Files Size Format View
ActaOlom_50-2011-2_7.pdf 252.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo