Previous |  Up |  Next

Article

Keywords:
impulse conditions; periodic boundary conditions; Green's function; fixed point theorems
Summary:
In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.
References:
[1] Atici, F. M., Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic coefficients. J. Comput. Appl. Math. 132 (2001), 341-356. DOI 10.1016/S0377-0427(00)00438-6 | MR 1840633
[2] Bainov, D. D., Simeonov, P. S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1993). MR 1266625 | Zbl 0815.34001
[3] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation New York (2006). MR 2322133 | Zbl 1130.34003
[4] Chen, J., Tisdell, C. C., Yuan, R.: On the solvability of periodic boundary value problems with impulse. J. Math. Anal. Appl. 331 (2007), 902-912. DOI 10.1016/j.jmaa.2006.09.021 | MR 2313690 | Zbl 1123.34022
[5] Dong, Y.: Periodic solutions for second order impulsive differential systems. Nonlinear Anal., Theory Methods Appl. 27 (1996), 811-820. DOI 10.1016/0362-546X(95)00068-7 | MR 1402168 | Zbl 0858.34035
[6] Eloe, P. W., Henderson, J.: A boundary value problem for a system of ordinary differential equations with impulse effects. Rocky Mt. J. Math. 27 (1997), 785-799. DOI 10.1216/rmjm/1181071893 | MR 1490275 | Zbl 0902.34014
[7] Franco, D., Nieto, J. J.: Maximum principles for periodic impulsive first order problems. J. Comput. Appl. Math. 88 (1998), 149-159. DOI 10.1016/S0377-0427(97)00212-4 | MR 1609074 | Zbl 0898.34010
[8] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. MR 1100424
[9] George, R. K., Nandakumaran, A. K., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241 (2000), 276-283. DOI 10.1006/jmaa.1999.6632 | MR 1739206 | Zbl 0965.93015
[10] Guan, Z. H., Chen, G., Ueta, T.: On impulsive control of a periodically forced chaotic pendulum system. IEEE Trans. Autom. Control 45 (2000), 1724-1727. DOI 10.1109/9.880633 | MR 1791705 | Zbl 0990.93105
[11] Hu, S., Lakshmikantham, V.: Periodic boundary value problems for second order impulsive differential systems. Nonlinear Anal., Theory Methods Appl. 13 (1989), 75-85. DOI 10.1016/0362-546X(89)90036-9 | MR 0973370 | Zbl 0712.34033
[12] Huseynov, A.: On the sign of Green's function for an impulsive differential equation with periodic boundary conditions. Appl. Math. Comput. 208 (2009), 197-205. DOI 10.1016/j.amc.2008.11.034 | MR 2490786 | Zbl 1170.34018
[13] Khristova, S. G., Bainov, D. D.: Existence of periodic solutions of nonlinear systems of differential equations with impulse effect. J. Math. Anal. Appl. 125 (1987), 192-202. DOI 10.1016/0022-247X(87)90174-0 | MR 0891359 | Zbl 0636.34031
[14] Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst. 7 (2000), 265-287. MR 1744966 | Zbl 1011.34031
[15] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific Singapore (1989). MR 1082551 | Zbl 0719.34002
[16] Lakshmikantham, V., Murty, K. N., Sivasundaram, S.: Impulsive differential systems for two-point boundary value problems. Appl. Math. Comput. 50 (1992), 157-166. DOI 10.1016/0096-3003(92)90123-I | MR 1172625 | Zbl 0769.34022
[17] Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitons Fractals 11 (2000), 2453-2472. DOI 10.1016/S0960-0779(00)00030-8 | MR 1787844 | Zbl 0964.70018
[18] Li, J., Nieto, J. J., Shen, J.: Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl. 325 (2007), 226-236. DOI 10.1016/j.jmaa.2005.04.005 | MR 2273040 | Zbl 1110.34019
[19] Liz, E., Nieto, J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations. Commentat. Math. Univ. Carol. 34 (1993), 405-411. MR 1243071 | Zbl 0780.34006
[20] Nenov, S.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal., Theory Methods Appl. 36 (1999), 881-890. DOI 10.1016/S0362-546X(97)00627-5 | MR 1682836 | Zbl 0941.49021
[21] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl. 205 (1997), 423-433. DOI 10.1006/jmaa.1997.5207 | MR 1428357 | Zbl 0870.34009
[22] Nieto, J. J.: Impulsive resonance periodic problems of first order. Appl. Math. Lett. 15 (2002), 489-493. DOI 10.1016/S0893-9659(01)00163-X | MR 1902284 | Zbl 1022.34025
[23] Nieto, J. J.: Periodic boundary value problems for first-order impulsive ordinary differential equations. Nonlinear. Anal., Theory Methods Appl. 51 (2002), 1223-1232. DOI 10.1016/S0362-546X(01)00889-6 | MR 1926625 | Zbl 1015.34010
[24] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. World Scientific Singapore (1995). MR 1355787 | Zbl 0837.34003
[25] Tian, Y.: Solutions to boundary-value problems for second-order impulsive differential equations at resonance. Electron. J. Differ. Equ. 2008, No. 18 (2008), 1-9. MR 2383382 | Zbl 1139.34027
[26] Vatsala, A. S., Sun, Y.: Periodic boundary value problems of impulsive differential equations. Appl. Anal. 44 (1992), 145-158. DOI 10.1080/00036819208840074 | MR 1284994 | Zbl 0753.34008
Partner of
EuDML logo