Previous |  Up |  Next

Article

Title: Periodic solutions for $n$-th order delay differential equations with damping terms (English)
Author: Pan, Lijun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 263-278
Summary lang: English
.
Category: math
.
Summary: By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for $n$ th order delay differential equations with damping terms $x^{(n)}(t)=\sum \limits ^{s}_{i=1}b_{i}[x^{(i)}(t)]^{2k-1}+ f(x(t-\tau (t)))+p(t)$. Some new results on the existence of periodic solutions of the investigated equation are obtained. (English)
Keyword: delay differential equations
Keyword: periodic solution
Keyword: coincidence degree
MSC: 34C25
idZBL: Zbl 1249.34206
idMR: MR2876949
.
Date available: 2011-12-16T15:14:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141775
.
Reference: [1] Chen, X. R., Pan, L. J.: Existence of periodic solutions for $n$th order differential equations with deviating argument.Int. J. Pure. Appl. Math. 55 (2009), 319–333. Zbl 1185.34092, MR 2561457
Reference: [2] Cong, F.: Periodic solutions for $2k$th order ordinary differential equations with resonance.Nonlinear Anal. 32 (1998), 787–793. MR 1612146, 10.1016/S0362-546X(97)00517-8
Reference: [3] Cong, F.: Existence of $2k+1$th order ordinary differential equations.Appl. Math. Lett. 17 (2004), 727–732. MR 2064187, 10.1016/S0893-9659(04)90112-7
Reference: [4] Cong, F., Huang, Q. D., Shi, S. Y.: Existence and uniqueness of periodic solutions for $2n+1$th order ordinary differential equations.J. Math. Anal. Appl. 241 (2000), 1–9. MR 1738328, 10.1006/jmaa.1999.6471
Reference: [5] Ezeilo, J. O. C.: On the existence of periodic solutions of a certain third–order differential equation.Proc. Cambridge Philos. Soc. 56 (1960), 381–389. Zbl 0097.29404, MR 0121539
Reference: [6] Fabry, C., Mawhin, J., Nkashama, M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 10 (1986), 173–180. Zbl 0586.34038, MR 0818822, 10.1112/blms/18.2.173
Reference: [7] Gaines, R. E., Mawhin, J.: Concidence degree and nonlinear differential equations.Lecture Notes in Math. 568 (1977), Berlin, New York, Springer–Verlag. MR 0637067
Reference: [8] Jiao, G.: Periodic solutions of $2n+1$th order ordinary differential equations.J. Math. Anal. Appl. 272 (2004), 691–699. MR 1930716
Reference: [9] Kiguradze, I. T., Půža, B.: On periodic solutions of system of differential equations with deviating arguments.Nonlinear Anal. 42 (2000), 229–242. MR 1773980, 10.1016/S0362-546X(98)00342-3
Reference: [10] Li, J. W., Wang, G. Q.: Sharp inequalities for periodic functions.Appl. Math. E-Notes 5 (2005), 75–83. Zbl 1076.26011, MR 2112160
Reference: [11] Liu, B. W., Huang, L. H.: Existence of periodic solutions for nonlinear $n$th order ordinary differential equations.Acta Math. Sinica 47 (2004), 1133–1140, in Chinese. Zbl 1124.34334, MR 2128079
Reference: [12] Liu, W. B., Li, Y.: The existence of periodic solutions for high order duffing equations.Acta Math. Sinica 46 (2003), 49–56, in Chinese. Zbl 1036.34052, MR 1971712
Reference: [13] Liu, Y. J., Yang, P. H., Ge, W. G.: Periodic solutions of high–order delay differential equations.Nonlinear Anal. 63 (2005), 136–152. MR 2167321, 10.1016/j.na.2005.04.038
Reference: [14] Liu, Z. L.: Periodic solution for nonlinear $n$th order ordinary differential equation.J. Math. Anal. Appl. 204 (1996), 46–64. 10.1006/jmaa.1996.0423
Reference: [15] Lu, S., Ge, W.: On the existence of periodic solutions for Lienard equation with a deviating argument.J. Math. Anal. Appl. 289 (2004), 241–243.
Reference: [16] Lu, S., Ge, W.: Sufficient conditions for the existence of periodic solutions to some second order differential equation with a deviating argument.J. Math. Anal. Appl. 308 (2005), 393–419. MR 2150099, 10.1016/j.jmaa.2004.09.010
Reference: [17] Mawhin, J.: Degré topologique et solutions périodiques des systémes différentiels nonlineaires.Bull. Soc. Roy. Sci. Liége 38 (1969), 308–398. MR 0594965
Reference: [18] Mawhin, J.: $L^{2}$–estimates and periodic solutions of some nonlinear differential equations.Boll. Unione Mat. Ital. 10 (1974), 343–354. MR 0369823
Reference: [19] Omari, P., Villari, G., Zanolin, F.: Periodic solutions of Lienard equation with one–side growth restrictions.J. Differential Equations 67 (1987), 278–293. MR 0879698, 10.1016/0022-0396(87)90151-3
Reference: [20] Pan, L. J.: Periodic solutions for higher order differential equations with deviating argument.J. Math. Anal. Appl. 343 (2008), 904–918. Zbl 1160.34065, MR 2417111, 10.1016/j.jmaa.2008.01.096
Reference: [21] Pan, L. J., Chen, X. R.: Periodic solutions for $n$th order functional differential equations.Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 109–126. Zbl 1202.34121, MR 2656675
Reference: [22] Reissig, R.: Periodic solutions of third–order nonlinear differential equation.Ann. Mat. Pura Appl. 92 (1972), 193–198. MR 0316827, 10.1007/BF02417946
Reference: [23] Ren, J. L., Ge, W. G.: On the existence of periodic solutions for the second order functional differential equation.Acta Math. Sinica 47 (2004), 569–578, in Chinese. MR 2083276
Reference: [24] Srzednicki, S.: On periodic solutions of certain $n$th differential equations.J. Math. Anal. Appl. 196 (1995), 666–675. MR 1362714, 10.1006/jmaa.1995.1433
Reference: [25] Wang, G. Q.: Existence theorems of periodic solutions for a delay nonlinear differential equation with piecewise constant argument.J. Math. Anal. Appl. 298 (2004), 298–307. MR 2086548, 10.1016/j.jmaa.2004.05.016
Reference: [26] Zhang, Z. Q., Wang, Z. C.: Periodic solution of the third order functional differential equation.J. Math. Anal. Appl. 292 (2004), 115–134. MR 2050220, 10.1016/j.jmaa.2003.11.059
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_4.pdf 523.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo