Previous |  Up |  Next

Article

Title: A class of metrics on tangent bundles of pseudo-Riemannian manifolds (English)
Author: Dida, H. M.
Author: Ikemakhen, A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 293-308
Summary lang: English
.
Category: math
.
Summary: We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible. (English)
Keyword: pseudo-Riemannian manifold
Keyword: tangent bundle
Keyword: Sasaki metric
Keyword: neutral metric
Keyword: holonomy group
Keyword: indecomposable-reducible manifold
Keyword: Einstein manifold
MSC: 53B30
MSC: 53C07
MSC: 53C29
MSC: 53C50
idZBL: Zbl 1249.53020
idMR: MR2876951
.
Date available: 2011-12-16T15:18:16Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141777
.
Reference: [1] Alekseevsky, D. V.: Riemannian manifolds with exceptional holonomy groups.Funksional Anal. Prilozh. 2 2 (1968), 1–10.
Reference: [2] Ambrose, W., Singer, I. M.: A theorem on holonomy.Trans. Amer. Math. Soc. 79 (1953), 428–443. Zbl 0052.18002, MR 0063739, 10.1090/S0002-9947-1953-0063739-1
Reference: [3] Berger, M.: Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes.Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
Reference: [4] Berger, M.: Les espace symétriques non compacts 1957.Ann. Sci. École Norm. Sup. (1957).
Reference: [5] Bergery, L. Bérard, Ikemakhen, A.: On the holonomy of Lorentzian manifolds.Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40. MR 1216527
Reference: [6] Bergery, L. Bérard, Ikemakhen, A.: Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n).Bull. Soc. Math. France 125 (1) (1997), 93–114. MR 1459299
Reference: [7] Besse, A.: Einstein manifolds.Springer Verlag, New York, 1987. Zbl 0613.53001, MR 0867684
Reference: [8] Boubel, Ch.: Sur l’holonomie des manifolds pseudo–Riemanniennes.Ph.D. thesis, Université Henri Poincaré Nancy I, 2000.
Reference: [9] Boubel, Ch.: On the holonomy of Lorentzian metrics.Ann. Fac. Sci. Toulouse 14 (3) (2007), 427–475. Zbl 1213.53063, MR 2379049, 10.5802/afst.1156
Reference: [10] Bryant, R. L.: Metrics with exceptional holonomy.Ann. of Math. (2) 126 (1987), 525–576. Zbl 0637.53042, MR 0916718
Reference: [11] Bryant, R. L.: Classical, exceptional, and exotic holonomies: A status report.Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166. Zbl 0882.53014, MR 1427757
Reference: [12] Cahen, A., Wallach, N.: Lorentzian symmetric spaces.Bull. Amer. Math. Soc. 76 (1970), 585–591. Zbl 0194.53202, MR 0267500, 10.1090/S0002-9904-1970-12448-X
Reference: [13] Cahen, M., Parker, M.: Sur des classes d’espaces pseudo-Riemannien symétriques.Bull. Soc. Math. Belg. 22 (1970), 339–354. MR 0286031
Reference: [14] Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces.Mem. Amer. Math. Soc. 24 (229) (1980). Zbl 0438.53057, MR 0556610
Reference: [15] de Rham, G.: Sur la réductibilité d’un espace de Riemann.Math Helv. 26 (1952), 328–344. Zbl 0048.15701, MR 0052177, 10.1007/BF02564308
Reference: [16] Dombrowski, P.: On the geometry of the tangent bundle.J. Reine Angew. Math. 2101 (1962), 73–88. Zbl 0105.16002, MR 0141050
Reference: [17] Galaev, A. S.: Metrics that realize all Lorentzian holonomy algebras.Int. J. Geom. Meth. Modern Phys. 3 (5–6) (2006), 1025–1045. Zbl 1112.53039, MR 2264404, 10.1142/S0219887806001570
Reference: [18] Galaev, A. S.: Holonomy of Einstein Lorentzian manifolds.Classical and Quantum Gravity 27 (7) (2010), 1–13. Zbl 1187.83017, MR 2602646, 10.1088/0264-9381/27/7/075008
Reference: [19] Galaev, A. S., Leistner, T.: Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry.ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96. MR 2436228
Reference: [20] Ikemakhen, A.: Example of indecomposable non–irreductible Lorentzian manifolds.Ann. Sci. Math. Quebec 20 (1996), 53–66. MR 1397338
Reference: [21] Kobayashi, S., Nomizu, K.: Fondation of Differential Geometry, vol. I,II.Intersciense, New York–London, 1963. MR 0152974
Reference: [22] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds.J. Reine Angew. Math. 250 (1971), 124–129. MR 0286028
Reference: [23] Krantz, T.: Holonomie des connexions sans torsion.Ph.D. thesis, University Henri Poincaré Nancy 1, 2007.
Reference: [24] Leistner, T.: Berger algebras, weak-Berger algebras and Lorentzian holonomy.(2002), sfb 288 preprint no. 567.
Reference: [25] Leistner, T.: On the classification of Lorentzian holonomy groups.J. Differential Geom. 76 (3) (2007), 423–484. Zbl 1129.53029, MR 2331527
Reference: [26] Wu, H.: On the de Rham decomposition theorem.llinois J. Math. 8 (1964), 291–311. Zbl 0122.40005, MR 0161280
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_6.pdf 490.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo