Title:
|
The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules (English) |
Author:
|
Ntumba, Patrice P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
265-278 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank. (English) |
Keyword:
|
symplectic $\mathcal A$-modules |
Keyword:
|
symplectic Gram-Schmidt theorem |
Keyword:
|
symplectic basis |
Keyword:
|
orthosymmetric $\mathcal {A}$-bilinear forms |
Keyword:
|
orthogonal/symplectic geometry |
Keyword:
|
strict integral domain algebra sheaf |
MSC:
|
16D90 |
MSC:
|
16S60 |
MSC:
|
18F20 |
idZBL:
|
Zbl 1249.18008 |
idMR:
|
MR2899750 |
DOI:
|
10.1007/s10587-012-0012-y |
. |
Date available:
|
2012-03-05T07:31:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142056 |
. |
Reference:
|
[1] Adkins, W. A., Weintraub, S. H.: Algebra. An Approach via Module Theory.Springer New York (1992). Zbl 0768.00003, MR 1181420 |
Reference:
|
[2] Artin, E.: Geometric Algebra.John Wiley & Sons/Interscience Publishers New York (1988). Zbl 0642.51001, MR 1009557 |
Reference:
|
[3] Berndt, R.: An Introduction to Symplectic Geometry.American Mathematical Society Providence (2001). Zbl 0986.53028, MR 1793955 |
Reference:
|
[4] Silva, A. Cannas da: Lectures on Symplectic Geometry.Springer Berlin (2001). MR 1853077 |
Reference:
|
[5] Chambadal, L., Ovaert, J. L.: Algèbre linéaire et algèbre tensorielle.Dunod Paris (1968). Zbl 0186.33402, MR 0240108 |
Reference:
|
[6] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Spinor Structures.Kluwer Dordrecht (1990). Zbl 0701.53003, MR 1044769 |
Reference:
|
[7] Gosson, M. de: Symplectic Geometry and Quantum Mechanics.Birkhäuser Basel (2006). Zbl 1098.81004, MR 2241188 |
Reference:
|
[8] Gruenberg, K. W., Weir, A. J.: Linear Geometry, 2nd edition.Springer New York, Heidelberg, Berlin (1977). |
Reference:
|
[9] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory.Kluwer Dordrecht (1998). Zbl 0904.18001 |
Reference:
|
[10] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications.Kluwer Dordrecht (1998). Zbl 0904.18002 |
Reference:
|
[11] Mallios, A.: $\mathcal{A}$-invariance: An axiomatic approach to quantum relativity.Int. J. Theor. Phys. 47 (2008), 1929-1948. MR 2442881, 10.1007/s10773-007-9637-2 |
Reference:
|
[12] Mallios, A.: Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields.Birkhäuser Boston (2006). MR 2189128 |
Reference:
|
[13] Mallios, A., Ntumba, P. P.: On a sheaf-theoretic version of the Witt's decomposition theorem. A Lagrangian perspective.Rend. Circ. Mat. Palermo 58 (2009), 155-168. Zbl 1184.18010, MR 2504993, 10.1007/s12215-009-0014-2 |
Reference:
|
[14] Mallios, A., Ntumba, P. P.: Fundamentals for symplectic $\mathcal{A}$-modules. Affine Darboux theorem.Rend. Circ. Mat. Palermo 58 (2009), 169-198. MR 2533910 |
Reference:
|
[15] Mallios, A., Ntumba, P. P.: Symplectic reduction of sheaves of $\mathcal{A}$-modules.\\arXiv:0802.4224. |
Reference:
|
[16] Mallios, A., Ntumba, P. P.: Pairings of sheaves of $\mathcal A$-modules.Quaest. Math. 31 (2008), 397-414. MR 2527450, 10.2989/QM.2008.31.4.8.612 |
Reference:
|
[17] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations.J. Diff. Geom. 14 (1979), 255-293. Zbl 0427.58005, MR 0587553, 10.4310/jdg/1214434974 |
Reference:
|
[18] Ntumba, P. P.: Cartan-Dieudonné theorem for $\mathcal A$-modules.Mediterr. J. Math. 7 (2010), 445-454. MR 2738570, 10.1007/s00009-010-0042-3 |
Reference:
|
[19] Sikorski, R.: Differential modules.Colloq. Math. 24 (1971), 45-79. Zbl 0226.53004, MR 0482794, 10.4064/cm-24-1-45-79 |
. |