Previous |  Up |  Next

Article

Title: The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules (English)
Author: Ntumba, Patrice P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 265-278
Summary lang: English
.
Category: math
.
Summary: Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank. (English)
Keyword: symplectic $\mathcal A$-modules
Keyword: symplectic Gram-Schmidt theorem
Keyword: symplectic basis
Keyword: orthosymmetric $\mathcal {A}$-bilinear forms
Keyword: orthogonal/symplectic geometry
Keyword: strict integral domain algebra sheaf
MSC: 16D90
MSC: 16S60
MSC: 18F20
idZBL: Zbl 1249.18008
idMR: MR2899750
DOI: 10.1007/s10587-012-0012-y
.
Date available: 2012-03-05T07:31:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142056
.
Reference: [1] Adkins, W. A., Weintraub, S. H.: Algebra. An Approach via Module Theory.Springer New York (1992). Zbl 0768.00003, MR 1181420
Reference: [2] Artin, E.: Geometric Algebra.John Wiley & Sons/Interscience Publishers New York (1988). Zbl 0642.51001, MR 1009557
Reference: [3] Berndt, R.: An Introduction to Symplectic Geometry.American Mathematical Society Providence (2001). Zbl 0986.53028, MR 1793955
Reference: [4] Silva, A. Cannas da: Lectures on Symplectic Geometry.Springer Berlin (2001). MR 1853077
Reference: [5] Chambadal, L., Ovaert, J. L.: Algèbre linéaire et algèbre tensorielle.Dunod Paris (1968). Zbl 0186.33402, MR 0240108
Reference: [6] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Spinor Structures.Kluwer Dordrecht (1990). Zbl 0701.53003, MR 1044769
Reference: [7] Gosson, M. de: Symplectic Geometry and Quantum Mechanics.Birkhäuser Basel (2006). Zbl 1098.81004, MR 2241188
Reference: [8] Gruenberg, K. W., Weir, A. J.: Linear Geometry, 2nd edition.Springer New York, Heidelberg, Berlin (1977).
Reference: [9] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory.Kluwer Dordrecht (1998). Zbl 0904.18001
Reference: [10] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications.Kluwer Dordrecht (1998). Zbl 0904.18002
Reference: [11] Mallios, A.: $\mathcal{A}$-invariance: An axiomatic approach to quantum relativity.Int. J. Theor. Phys. 47 (2008), 1929-1948. MR 2442881, 10.1007/s10773-007-9637-2
Reference: [12] Mallios, A.: Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields.Birkhäuser Boston (2006). MR 2189128
Reference: [13] Mallios, A., Ntumba, P. P.: On a sheaf-theoretic version of the Witt's decomposition theorem. A Lagrangian perspective.Rend. Circ. Mat. Palermo 58 (2009), 155-168. Zbl 1184.18010, MR 2504993, 10.1007/s12215-009-0014-2
Reference: [14] Mallios, A., Ntumba, P. P.: Fundamentals for symplectic $\mathcal{A}$-modules. Affine Darboux theorem.Rend. Circ. Mat. Palermo 58 (2009), 169-198. MR 2533910
Reference: [15] Mallios, A., Ntumba, P. P.: Symplectic reduction of sheaves of $\mathcal{A}$-modules.\\arXiv:0802.4224.
Reference: [16] Mallios, A., Ntumba, P. P.: Pairings of sheaves of $\mathcal A$-modules.Quaest. Math. 31 (2008), 397-414. MR 2527450, 10.2989/QM.2008.31.4.8.612
Reference: [17] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations.J. Diff. Geom. 14 (1979), 255-293. Zbl 0427.58005, MR 0587553, 10.4310/jdg/1214434974
Reference: [18] Ntumba, P. P.: Cartan-Dieudonné theorem for $\mathcal A$-modules.Mediterr. J. Math. 7 (2010), 445-454. MR 2738570, 10.1007/s00009-010-0042-3
Reference: [19] Sikorski, R.: Differential modules.Colloq. Math. 24 (1971), 45-79. Zbl 0226.53004, MR 0482794, 10.4064/cm-24-1-45-79
.

Files

Files Size Format View
CzechMathJ_62-2012-1_20.pdf 291.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo