Previous |  Up |  Next

Article

Title: On the extremal behavior of a Pareto process: an alternative for ARMAX modeling (English)
Author: Ferreira, Marta
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 1
Year: 2012
Pages: 31-49
Summary lang: English
.
Category: math
.
Summary: In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated. (English)
Keyword: extreme value theory
Keyword: Markov chains
Keyword: autoregressive processes
Keyword: tail dependence
MSC: 60G70
MSC: 60J20
idZBL: Zbl 1263.62109
idMR: MR2932927
.
Date available: 2012-03-05T08:28:54Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142062
.
Reference: [1] M. T. Alpuim: An extremal markovian sequence..J. Appl. Probab. 26 (1989), 219-232. Zbl 0677.60026, MR 1000283, 10.2307/3214030
Reference: [2] B. C. Arnold: Pareto Distributions..International Cooperative Publishing House, Fairland 1983. MR 0751409
Reference: [3] B. C. Arnold: Pareto processes..In: Handbook of Statistics (D. N. Shanbhag and C. R. Rao, eds.), Elsevier Science B.V. 2001, Vol. 19. Zbl 0981.60036, MR 1861718
Reference: [4] S. Asmussen: Applied Probability and Queues..John Wiley & Sons, Chichester 1987. Zbl 0624.60098, MR 0889893
Reference: [5] L. Canto e Castro: Sobre a Teoria Assintótica de Extremos..Ph.D. Thesis, FCUL 1992.
Reference: [6] M. R. Chernick: A limit theorem for the maximum of autoregressive processes with uniform marginal distribution..Ann. Probab. 9 (1981), 145-149. MR 0606803, 10.1214/aop/1176994514
Reference: [7] M. R. Chernick, T. Hsing, W. P. McCormick: Calculating the extremal index for a class of stationary sequences..Adv. Probab. 23 (1991), 835-850. Zbl 0741.60042, MR 1133731, 10.2307/1427679
Reference: [8] R. Davis, S. Resnick: Basic properties and prediction of max-ARMA processes..Adv. Appl. Probab. 21 (1989), 781-803. Zbl 0716.62098, MR 1039628, 10.2307/1427767
Reference: [9] D. J. Daley, J. Haslett: A thermal energy storage process with controlled input..Adv. Appl. Probab. 14 (1982), 257-271. Zbl 0479.60097, MR 0650122, 10.2307/1426520
Reference: [10] A. L. M. Dekkers, J. H. J. Einmahl, L. de Haan: A moment estimator for the index of an extreme value distribution..Ann. Statist. 17 (1989), 1833-1855. Zbl 0701.62029, MR 1026315, 10.1214/aos/1176347397
Reference: [11] H. Drees: Extreme quantile estimation for dependent data with applications to finance..Bernoulli 9 (2003), 617-657. Zbl 1040.62077, MR 1996273, 10.3150/bj/1066223272
Reference: [12] H. Ferreira: The upcrossings index and the extremal index..J. Appl. Probab. 43(4) (2006), 927-937. Zbl 1137.60024, MR 2274627, 10.1239/jap/1165505198
Reference: [13] M. Ferreira, L. Canto e Castro: Modeling rare events through a $p$RARMAX process..J. Statist. Plann. Inference 140 (2010), 11, 3552-3566. MR 2659877, 10.1016/j.jspi.2010.05.024
Reference: [14] M. Ferreira, H. Ferreira: On extremal dependence: some contributions..(In press).
Reference: [15] I. S. Helland, T. S. Nilsen: On a general random exchange model..J. Appl. Probab. 13 (1976), 781-790. Zbl 0349.60066, MR 0431437, 10.2307/3212533
Reference: [16] B. M. Hill: A simple general approach to inference about the tail of a distribution..Ann. Statist. 3 (1975), 1163-1174. Zbl 0323.62033, MR 0378204, 10.1214/aos/1176343247
Reference: [17] J. R. M. Hosking, J. R. Wallis: Parameter and quantile estimation for the generalized Pareto distribution..Technometrics 29 (1987), 339-349. Zbl 0628.62019, MR 0906643, 10.1080/00401706.1987.10488243
Reference: [18] T. Hsing, J. Hüsler, M. R. Leadbetter: On the exceedance point process for a stationary sequence..Probab. Theory Related Fields 78 (1988), 97-112. Zbl 0619.60054, MR 0940870, 10.1007/BF00718038
Reference: [19] J. Klotz: Statistical inference in Bernoulli trials with dependence..Ann. Statist. 1 (1973), 373-379. Zbl 0256.62029, MR 0381103, 10.1214/aos/1176342377
Reference: [20] M. R. Leadbetter: On extreme values in stationary sequences..Z. Wahrsch. verw. Gebiete 28 (1974), 289-303. Zbl 0265.60019, MR 0362465, 10.1007/BF00532947
Reference: [21] M. R. Leadbetter, G. Lindgren, H. Rootzén: Extremes and Related Properties of Random Sequences and Processes..Springer-Verlag, New York 1983. Zbl 0518.60021, MR 0691492
Reference: [22] M. R. Leadbetter, S. Nandagopalan: On exceedance point processes for stationary sequences under mild oscillation restrictions..In: Extreme Value Theory (J. Hüsler and R.-D. Reiss, eds.), Springer-Verlag 1989, pp. 69-80. Zbl 0677.60040, MR 0992049
Reference: [23] A. V. Lebedev: Statistical analysis of first-order MARMA processes..Mat. Zametki 83 (2008), 4, 552-558. Zbl 1152.62059, MR 2431621
Reference: [24] A. Ledford, J. A. Tawn: Statistics for near independence in multivariate extreme values..Biometrika 83 (1996), 169-187. Zbl 0865.62040, MR 1399163, 10.1093/biomet/83.1.169
Reference: [25] A. Ledford, J. A. Tawn: Modelling dependence within joint tail regions..J. Royal Statist. Soc. Ser. B 59 (1997), 475-499. Zbl 0886.62063, MR 1440592, 10.1111/1467-9868.00080
Reference: [26] V. Pareto: Cours d'economie Politique..F. Rouge, Lausanne Vol. II., 1897.
Reference: [27] J. Pickands III: Statistical inference using extreme order statistics..Ann. Statist. 3 (1975), 119-131. MR 0423667, 10.1214/aos/1176343003
Reference: [28] S. Resnick, C. Stǎricǎ: Consistency of Hill's estimator for dependent data..J. Appl. Probab. 32 (1995), 139-167. MR 1316799, 10.2307/3214926
Reference: [29] S. Resnick, C. Stǎricǎ: Tail index estimation for dependent data..Ann. Appl. Probab. 8 (1998), 4, 1156-1183. MR 1661160, 10.1214/aoap/1028903376
Reference: [30] H. Rootzén, M. R. Leadbetter, L. de Haan: Tail and Quantile Estimation for Strongly Mixing Stationary Sequences..Technical Report, UNC Center for Stochastic Processes, 1990.
Reference: [31] R. L. Smith: Estimating tails of probability distributions..Ann. Statist. 15 (1987), 1174-1207. Zbl 0642.62022, MR 0902252, 10.1214/aos/1176350499
Reference: [32] H. C. Yeh, B. C. Arnold, C. A. Robertson: Pareto processes..J. Appl. Probab. 25 (1988), 291-301. Zbl 0658.62101, MR 0938193, 10.2307/3214437
Reference: [33] Z. Zhang, R. L. Smith: Modelling Financial Time Series Data as Moving Maxima Processes..Technical Report Dept. Stat. (Univ. North Carolina, Chapel Hill, NC, 2001); http://www.stat.unc.edu/faculty/rs/ papers/RLS_Papers.html.
.

Files

Files Size Format View
Kybernetika_48-2012-1_3.pdf 495.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo