Previous |  Up |  Next

Article

Title: Tangent Lie algebras to the holonomy group of a Finsler manifold (English)
Author: Muzsnay, Zoltán
Author: Nagy, Péter T.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 2
Year: 2011
Pages: 137-147
Summary lang: English
.
Category: math
.
Summary: Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to the Berwald connection. At the end we introduce conjugates of infinitesimal holonomy algebras by parallel translations with respect to the Berwald connection. We prove that this holonomy algebra is tangent to the holonomy group. (English)
Keyword: higher order field theories
Keyword: boundary terms
MSC: 22E65
MSC: 53B40
MSC: 53C29
idZBL: Zbl 1247.53026
idMR: MR2897266
.
Date available: 2012-04-06T06:18:49Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142097
.
Reference: [1] Barthel, W.: Nichtlineare Zusammenhänge und deren Holonomiegruppen. J. Reine Angew. Math. 212 1963 120-149 Zbl 0115.39704, MR 0149409
Reference: [2] Crampin, M., Saunders, D.J.: Holonomy of a class of bundles with fibre metrics. arXiv: 1005.5478v1
Reference: [3] Kozma, L.: Holonomy structures in Finsler geometry, Part 5. Handbook of Finsler Geometry , P.L. Antonelli (ed.)445-490 Kluwer Academic Publishers, Dordrecht 2003 MR 2066448
Reference: [4] Kriegl, A., Michor, P.W.: The Convenient Setting for Global Analysis. AMS, Providence, Surveys and Monographs 53 1997 MR 1471480
Reference: [5] Michor, P.W.: Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Sciences, Lecture Notes 19, Bibliopolis, Napoli 1991 Zbl 0953.53001, MR 1204655
Reference: [6] Muzsnay, Z., Nagy, P.T.: Finsler manifolds with non-Riemannian holonomy. Houston J. Math
Reference: [7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht 2001 Zbl 1009.53004, MR 1967666
Reference: [8] Szabó, Z.I.: Positive definite Berwald spaces. Tensor , New Ser., 35 1981 25-39 Zbl 0464.53025, MR 0614132
.

Files

Files Size Format View
ActaOstrav_19-2011-2_4.pdf 508.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo