Previous |  Up |  Next

Article

Title: A geometric analysis of dynamical systems with singular Lagrangians (English)
Author: Havelková, Monika
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 2
Year: 2011
Pages: 169-178
Summary lang: English
.
Category: math
.
Summary: We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics. (English)
Keyword: singular Lagrangian systems
Keyword: geometric constraint algorithm
Keyword: extended dynamics
Keyword: proper dynamics
Keyword: final constraint submanifold higher order field theories
MSC: 37J05
MSC: 51P05
MSC: 70G45
MSC: 70H03
MSC: 70H45
idZBL: Zbl 1251.37052
idMR: MR2897268
.
Date available: 2012-04-06T06:20:56Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142099
.
Reference: [1] Chinea, D., León, M. de, Marrero, J.C.: The constraint algorithm for time-dependent Lagrangians. J. Math. Phys. 35 1994 3410-3447 Zbl 0810.70014, MR 1279313, 10.1063/1.530476
Reference: [2] Dirac, P.A.M.: Generalized Hamiltonian dynamics. Canad. J. Math. II 1950 129-148 Zbl 0036.14104, MR 0043724, 10.4153/CJM-1950-012-1
Reference: [3] El-Zalan, H.A., Muslih, S.I., Elsabaa, F.M.F.: The Hamiltonian-Jacobi analysis of dynamical system with singular higher order Lagrangians. Hadronic Journal 30 2007 209-220 MR 2356437
Reference: [4] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier, Grenoble 23 1973 203-267 Zbl 0243.49011, MR 0341531, 10.5802/aif.451
Reference: [5] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem. Ann. Inst. H. Poincaré Sect. A, 30 1979 129-142 Zbl 0414.58015, MR 0535369
Reference: [6] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems II: the second order equation problem. Ann. Inst. H. Poincaré Sect. A, 32 1980 1-13 Zbl 0453.58016, MR 0574809
Reference: [7] Gotay, M.J., Nester, J.M., Hinds, G.: Presymplectic manifolds and the Dirac-Bergmann theory of constraints. J. Math. Phys. 19 1978 2388-2399 Zbl 0418.58010, MR 0506712, 10.1063/1.523597
Reference: [8] Krupková, O.: A geometric setting for higher-order Dirac-Bergmann theory of constraints. J. Math. Phys. 35 1994 6557-6576 Zbl 0823.70016, MR 1303063, 10.1063/1.530691
Reference: [9] Krupková, O.: The Geometry of Ordinary Variational Equations. Springer 1997 MR 1484970
Reference: [10] Saunders, D.J.: The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge 2nd Ed. 2004 MR 0989588
.

Files

Files Size Format View
ActaOstrav_19-2011-2_6.pdf 422.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo