Previous |  Up |  Next

Article

Title: Convexity inequalities for estimating generalized conditional entropies from below (English)
Author: Rastegin, Alexey
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 242-253
Summary lang: English
.
Category: math
.
Summary: Generalized entropic functionals are in an active area of research. Hence lower and upper bounds on these functionals are of interest. Lower bounds for estimating Rényi conditional $\alpha$-entropy and two kinds of non-extensive conditional $\alpha$-entropy are obtained. These bounds are expressed in terms of error probability of the standard decision and extend the inequalities known for the regular conditional entropy. The presented inequalities are mainly based on the convexity of some functions. In a certain sense, they are complementary to generalized inequalities of Fano type. (English)
Keyword: Rènyi $\alpha $-entropy
Keyword: non-extensive entropy of degree $\alpha $
Keyword: error probability
Keyword: Bayesian problems
Keyword: functional convexity
MSC: 39B62
MSC: 60E15
MSC: 62C10
MSC: 94E17
idMR: MR2954323
.
Date available: 2012-05-15T16:13:32Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142811
.
Reference: [1] L. Baladová: Minimum of average conditional entropy for given minimum probability of error..Kybernetika 2 (1966), 416-422. Zbl 0199.21502, MR 0215641
Reference: [2] T. Cover, J. Thomas: Elements of Information Theory..John Wiley & Sons, New York 1991. Zbl 1140.94001, MR 1122806
Reference: [3] I. Csiszár: Axiomatic characterizations of information measures..Entropy 10 (2008), 261-273. Zbl 1179.94043, 10.3390/e10030261
Reference: [4] Z. Daróczy: Generalized information functions..Inform. and Control 16 (1970), 36-51. Zbl 0205.46901, MR 0272528, 10.1016/S0019-9958(70)80040-7
Reference: [5] M. H. DeGroot: Optimal Statistical Decisions..McGraw-Hill, New York 1970. Zbl 1136.62011, MR 0356303
Reference: [6] D. Erdogmus, J. C. Principe: Lower and upper bounds for misclassification probability based on Rényi's information..J. VLSI Signal Process. 37 (2004), 305-317. Zbl 1073.94507, 10.1023/B:VLSI.0000027493.48841.39
Reference: [7] R. M. Fano: Transmission of Information: A Statistical Theory of Communications..MIT Press and John Wiley & Sons, New York 1961. Zbl 0151.24402, MR 0134389
Reference: [8] M. Feder, N. Merhav: Relations between entropy and error probability..IEEE Trans. Inform. Theory 40 (1994), 259-266. Zbl 0802.94004, 10.1109/18.272494
Reference: [9] S. Furuichi: Information theoretical properties of Tsallis entropies..J. Math. Phys. 47 (2006), 023302. Zbl 1111.94008, MR 2208160, 10.1063/1.2165744
Reference: [10] M. Gell-Mann, C. Tsallis, eds.: Nonextensive Entropy - Interdisciplinary Applications..Oxford University Press, Oxford 2004. Zbl 1127.82004, MR 2073730
Reference: [11] G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities..Cambridge University Press, London 1934. Zbl 0634.26008
Reference: [12] J. Havrda, F. Charvát: Quantification methods of classification processes: concept of structural $\alpha$-entropy..Kybernetika 3 (1967), 30-35. MR 0209067
Reference: [13] P. Jizba, T. Arimitsu: The world according to Rényi: thermodynamics of multifractal systems..Ann. Phys. 312 (2004), 17-59. Zbl 1044.82001, MR 2067083, 10.1016/j.aop.2004.01.002
Reference: [14] R. Kamimura: Minimizing $\alpha$-information for generalization and interpretation..Algorithmica 22 (1998), 173-197. Zbl 0910.68173, MR 1637503, 10.1007/PL00013828
Reference: [15] A. Novikov: Optimal sequential procedures with Bayes decision rules..Kybernetika 46 (2010), 754-770. Zbl 1201.62095, MR 2722099
Reference: [16] A. Perez: Information-theoretic risk estimates in statistical decision..Kybernetika 3 (1967), 1-21. Zbl 0153.48403, MR 0208775
Reference: [17] A. E. Rastegin: Rényi formulation of the entropic uncertainty principle for POVMs..J. Phys. A: Math. Theor. 43 (2010), 155302. Zbl 1189.81012, MR 2608279, 10.1088/1751-8113/43/15/155302
Reference: [18] A. E. Rastegin: Entropic uncertainty relations for extremal unravelings of super-operators..J. Phys. A: Math. Theor. 44 (2011), 095303. Zbl 1211.81021, MR 2771869, 10.1088/1751-8113/44/9/095303
Reference: [19] A. E. Rastegin: Continuity estimates on the Tsallis relative entropy..E-print arXiv:1102.5154v2 [math-ph] (2011). MR 2841748
Reference: [20] A. E. Rastegin: Fano type quantum inequalities in terms of $q$-entropies..Quantum Information Processing (2011), doi 10.1007/s11128-011-0347-6.
Reference: [21] A. Rényi: On measures of entropy and information..In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1961, pp. 547-561. Zbl 0106.33001, MR 0132570
Reference: [22] A. Rényi: On the amount of missing information in a random variable concerning an event..J. Math. Sci. 1 (1966), 30-33. MR 0210263
Reference: [23] A. Rényi: Statistics and information theory..Stud. Sci. Math. Hung. 2 (1967), 249-256. Zbl 0155.27602, MR 0212964
Reference: [24] A. Rényi: On some basic problems of statistics from the point of view of information theory..In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1967, pp. 531-543. Zbl 0201.51905, MR 0212963
Reference: [25] B. Schumacher: Sending entanglement through noisy quantum channels..Phys. Rev. A 54 (1996), 2614-2628. 10.1103/PhysRevA.54.2614
Reference: [26] C. Tsallis: Possible generalization of Boltzmann-Gibbs statistics..J. Stat. Phys. 52 (1988), 479-487. Zbl 1082.82501, MR 0968597, 10.1007/BF01016429
Reference: [27] I. Vajda: On the statistical decision problem with discrete paprameter space..Kybernetika 3 (1967), 110-126. MR 0215428
Reference: [28] I. Vajda: Bounds of the minimal error probability on checking a finite or countable number of hypotheses..Problemy Peredachii Informacii 4 (1968), 9-19 (in Russian); translated as Problems of Information Transmission 4 (1968), 6-14. MR 0267685
Reference: [29] K. Życzkowski: Rényi extrapolation of Shannon entropy..Open Sys. Inform. Dyn. 10 (2003), 297-310; corrigendum in the e-print version arXiv:quant-ph/0305062v2. Zbl 1030.94022, MR 1998623
.

Files

Files Size Format View
Kybernetika_48-2012-2_5.pdf 297.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo