Previous |  Up |  Next

Article

Title: On a problem by Schweizer and Sklar (English)
Author: Durante, Fabrizio
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 287-293
Summary lang: English
.
Category: math
.
Summary: We give a representation of the class of all $n$-dimensional copulas such that, for a fixed $m\in \mathbb N$, $2\le m < n$, all their $m$-dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar. (English)
Keyword: copulas
Keyword: distributions with given marginals
Keyword: Frèchet–Hoeffding bounds
Keyword: partial mutual independence
MSC: 60E05
MSC: 62E10
idMR: MR2954326
.
Date available: 2012-05-15T16:17:50Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142814
.
Reference: [1] V. Beneš, J. Štěpán, eds.: Distributions With Given Marginals and Moment Problems..Kluwer Academic Publishers, Dordrecht 1997. Zbl 0885.00054, MR 1614650
Reference: [2] C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, eds.: Distributions With Given Marginals and Statistical Modelling..Kluwer Academic Publishers, Dordrecht 2002. Papers from the meeting held in Barcelona 2000. Zbl 1054.62002, MR 2058972
Reference: [3] G. Dall'Aglio, S. Kotz, G. Salinetti, eds.: Advances in Probability Distributions with Given Marginals..Mathematics and its Applications 67, Kluwer Academic Publishers Group, Dordrecht 1991. Beyond the Copulas, Papers from the Symposium on Distributions with Given Marginals held in Rome 1990. Zbl 0722.00031, MR 1215942
Reference: [4] P. Deheuvels: Indépendance multivariée partielle et inégalités de Fréchet..In: Studies in Probability and Related Topics, Nagard, Rome 1983, pp. 145-155. Zbl 0557.60013, MR 0778216
Reference: [5] F. Durante, E. P. Klement, J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals..J. Inequal. Appl. 2008 (2008), 1-9. Zbl 1162.62047, MR 2481572
Reference: [6] P. Jaworski, F. Durante, W. Härdle, T. Rychlik, eds.: Copula Theory and its Applications..Lecture Notes in Statistics - Proceedings 198, Springer, Berlin - Heidelberg 2010. Zbl 1194.62077
Reference: [7] H. Joe: Multivariate Models and Dependence Concepts..Monographs on Statistics and Applied Probability 73, Chapman & Hall, London 1997. Zbl 0990.62517, MR 1462613
Reference: [8] R. B. Nelsen: An Introduction to Copulas. Second edition..Springer Series in Statistics, Springer, New York 2006. MR 2197664
Reference: [9] L. Rüschendorf, B. Schweizer, M. D. Taylor, eds.: Distributions with Fixed Marginals and Related Topics..Institute of Mathematical Statistics, Lecture Notes - Monograph Series 28, Hayward 1996. Zbl 0944.60012, MR 1485518
Reference: [10] B. Schweizer, A. Sklar: Probabilistic Metric Spaces..North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York 1983. Reprinted, Dover, Mineola 2005. Zbl 0546.60010, MR 0790314
Reference: [11] K. F. Siburg, P. A. Stoimenov: Gluing copulas..Comm. Statist. Theory Methods 37 (2008), 19, 3124-3134. MR 2467756, 10.1080/03610920802074844
Reference: [12] A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges..Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
.

Files

Files Size Format View
Kybernetika_48-2012-2_8.pdf 276.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo