Previous |  Up |  Next

Article

Title: Lower bound and upper bound of operators on block weighted sequence spaces (English)
Author: Lashkaripour, Rahmatollah
Author: Talebi, Gholomraza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 293-304
Summary lang: English
.
Category: math
.
Summary: Let $A=(a_{n,k})_{n,k\geq 1}$ be a non-negative matrix. Denote by $L_{v,p,q,F}(A)$ the supremum of those $L$ that satisfy the inequality $$ \|Ax\|_{v,q,F} \ge L\| x\|_{v,p,F}, $$ where $x\geq 0$ and $x\in l_p(v,F)$ and also $v=(v_n)_{n=1}^\infty $ is an increasing, non-negative sequence of real numbers. If $p=q$, we use $L_{v,p,F}(A)$ instead of $L_{v,p,p,F}(A)$. In this paper we obtain a Hardy type formula for $L_{v,p,q,F}(H_\mu )$, where $H_\mu $ is a Hausdorff matrix and $0<q\leq p\leq 1$. Another purpose of this paper is to establish a lower bound for $\|A_{W}^{NM} \|_{v,p,F}$, where $A_{W}^{NM}$ is the Nörlund matrix associated with the sequence $W=\{w_n\}_{n=1}^\infty $ and $1<p<\infty $. Our results generalize some works of Bennett, Jameson and present authors. (English)
Keyword: lower bound
Keyword: weighted sequence space
Keyword: Hausdorff matrices
Keyword: Euler matrices
Keyword: Cesàro matrices
Keyword: Hölder matrices
Keyword: Gamma matrices
MSC: 26D15
MSC: 40G05
MSC: 46A45
MSC: 47A30
MSC: 54D55
idZBL: Zbl 1265.26074
idMR: MR2990178
DOI: 10.1007/s10587-012-0031-8
.
Date available: 2012-06-08T09:34:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142829
.
Reference: [1] Azimi, P.: A new class of Banach sequence spaces.Bull. Iran. Math. Soc. 28 (2002), 57-68. Zbl 1035.46006, MR 1992259
Reference: [2] Bennett, G.: Inequalities complimentary to Hardy.Q. J. Math. Oxf. II, Ser. 49 (1998), 395-432. Zbl 0929.26013, MR 1652236, 10.1093/qmathj/49.4.395
Reference: [3] Bennett, G.: Factorizing the classical inequalities.Mem. Am. Math. Soc. 576 (1996), 1-13. Zbl 0857.26009, MR 1317938
Reference: [4] Bennett, G.: Lower bounds for matrices.Linear Algebra Appl. 82 (1986), 81-98. Zbl 0601.15014, MR 0858964
Reference: [5] Borwein, D.: Nörlund operators on $l_p$.Can. Math. Bull. 36 (1993), 8-14. MR 1205888, 10.4153/CMB-1993-002-x
Reference: [6] Chen, Ch.-P., Wang, K.-Z.: Lower bounds of Copson type for Hausdorff matrices. II.Linear Algebra Appl. 422 (2007), 563-573. Zbl 1135.15015, MR 2305141, 10.1016/j.laa.2006.11.015
Reference: [7] Foroutannia, D.: Upper bound and lower bound for matrix operators on weighted sequence space.PhD. Thesis Zahedan (2007).
Reference: [8] Jameson, G. J. O., Lashkaripour, R.: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Electronic only. Zbl 1021.47019, MR 1888921
Reference: [9] jun., P. D. Johnson, Mohapatra, R. N., Ross, D.: Bounds for the operator norms of some Nörlund matrices.Proc. Am. Math. Soc. 124 (1996), 543-547. Zbl 0846.40007, MR 1301506, 10.1090/S0002-9939-96-03081-X
Reference: [10] Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on block weighted sequence spaces. I.Czech. Math. J. 59 (134) (2009), 81-94. Zbl 1217.47065, MR 2486617, 10.1007/s10587-009-0006-6
Reference: [11] Lashkaripour, R., Foroutannia, D.: Computation of matrix operators bounds with applying new extension of Hardy inequality on weighted sequence spaces. I.Lobachevskii J. Math. 30 (2009), 40-45. Zbl 1177.26039, MR 2506053, 10.1134/S1995080209010065
Reference: [12] Lashkaripour, R., Talebi, G.: Lower bound of Copson type for Hausdorff matrices on weighted sequence spaces.J. Sci., Islam. Repub. Iran 22 (2011), 153-157. MR 2884149
Reference: [13] Lashkaripour, R., Talebi, G.: Lower bound for the norm of lower triangular matrices on block weighted sequence spaces.J. Math. Inequal. 5 (2011), 33-38. Zbl 1211.26018, MR 2799056, 10.7153/jmi-05-04
Reference: [14] Lashkaripour, R., Talebi, G.: Bounds for the operator norms of some Nörlund matrices on weighted sequence spaces.Preprint.
.

Files

Files Size Format View
CzechMathJ_62-2012-2_1.pdf 262.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo