Previous |  Up |  Next

Article

Title: Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow (English)
Author: Boussandel, Sahbi
Author: Chill, Ralph
Author: Fašangová, Eva
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 335-346
Summary lang: English
.
Category: math
.
Summary: Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only. (English)
Keyword: curve shortening flow
Keyword: maximal regularity
Keyword: local inverse function theorem
MSC: 35B30
MSC: 35B65
MSC: 35K90
MSC: 35K93
MSC: 46T20
idZBL: Zbl 1265.35019
idMR: MR2990180
DOI: 10.1007/s10587-012-0033-6
.
Date available: 2012-06-08T09:37:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142832
.
Reference: [1] Almgren, F., Taylor, J. E., Wang, L.: Curvature-driven flows: a variational approach.SIAM J. Control Optimization 31 (1993), 387-438. Zbl 0783.35002, MR 1205983, 10.1137/0331020
Reference: [2] Amann, H.: Maximal regularity for nonautonomous evolution equations.Adv. Nonlinear Stud. 4 (2004), 417-430. Zbl 1072.35103, MR 2100906, 10.1515/ans-2004-0404
Reference: [3] Amann, H.: Maximal regularity and quasilinear parabolic boundary value problems.Recent advances in elliptic and parabolic problems. Hackensack, NJ: World Scientific (2005), 1-17. Zbl 1144.35034, MR 2172562
Reference: [4] Amann, H.: Quasilinear parabolic problems via maximal regularity.Adv. Differ. Equ. 10 (2005), 1081-1110. Zbl 1103.35059, MR 2162362
Reference: [5] Amann, H.: Existence and regularity for semilinear parabolic evolution equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. Zbl 0625.35045, MR 0808425
Reference: [6] Amann, H.: Quasilinear evolution equations and parabolic systems.Trans. Am. Math. Soc. 293 (1986), 191-227. Zbl 0635.47056, MR 0814920, 10.1090/S0002-9947-1986-0814920-4
Reference: [7] Angenent, S. B.: Nonlinear analytic semiflows.Proc. R. Soc. Edinb., Sect. A 115 (1990), 91-107. Zbl 0723.34047, MR 1059647, 10.1017/S0308210500024598
Reference: [8] Angenent, S. B.: Parabolic equations for curves on surfaces I. Curves with {$p$}-integrable curvature.Ann. Math. (2) 132 (1990), 451-483. Zbl 0789.58070, MR 1078266
Reference: [9] Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: {$L^p$}-maximal regularity for nonautonomous evolution equations.J. Differ. Equations 237 (2007), 1-26. MR 2327725, 10.1016/j.jde.2007.02.010
Reference: [10] Bothe, D., Prüss, J.: {$L_P$}-theory for a class of non-Newtonian fluids.SIAM J. Math. Anal. 39 (2007), 379-421. Zbl 1172.35052, MR 2338412, 10.1137/060663635
Reference: [11] Brakke, K. A.: The Motion of a Surface by its Mean Curvature.Princeton, New Jersey: Princeton University Press. Tokyo: University of Tokyo Press (1978). Zbl 0386.53047, MR 0485012
Reference: [12] Chou, K.-S., Zhu, X.-P.: The Curve Shortening Problem.Boca Raton, FL: Chapman & Hall/CRC. ix (2001). Zbl 1061.53045, MR 1888641
Reference: [13] Clément, P., Li, S.: Abstract parabolic quasilinear equations and application to a groundwater flow problem.Adv. Math. Sci. Appl. 3 (1994), 17-32. Zbl 0811.35040, MR 1287921
Reference: [14] Prato, G. Da, Grisvard, P.: Equations d'évolution abstraites non linéaires de type parabolique.Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 329-396 French. Zbl 0471.35036, MR 0551075, 10.1007/BF02411952
Reference: [15] Simon, L. De: Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine.Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. Zbl 0196.44803, MR 0176192
Reference: [16] Deckelnick, K.: Weak solutions of the curve shortening flow.Calc. Var. Partial Differ. Equ. 5 (1997), 489-510. Zbl 0990.35076, MR 1473305, 10.1007/s005260050076
Reference: [17] Deckelnick, K., Dziuk, G., Elliott, C. M.: Computation of geometric partial differential equations and mean curvature flow.Acta Numerica 14 (2005), 139-232. Zbl 1113.65097, MR 2168343, 10.1017/S0962492904000224
Reference: [18] DeTurck, D. M.: Deforming metrics in the direction of their Ricci tensors.J. Differ. Geom. 18 (1983), 157-162. Zbl 0517.53044, MR 0697987, 10.4310/jdg/1214509286
Reference: [19] Ecker, K.: Regularity Theory for Mean Curvature Flow.Progress in Nonlinear Differential Equations and Their Applications 57. Boston, MA: Birkhäuser (2004). Zbl 1058.53054, MR 2024995
Reference: [20] Escher, J., Prüss, J., Simonett, G.: A new approach to the regularity of solutions for parabolic equations.Evolution Equations. Proceedings in honor of the 60th birthdays of P. Bénilan, J. A. Goldstein and R. Nagel. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 234 (2003), 167-190. Zbl 1070.35009, MR 2073744
Reference: [21] Giga, Y.: Surface Evolution Equations. A level set approach.Monographs in Mathematics 99. Basel: Birkhäuser (2006). Zbl 1096.53039, MR 2238463
Reference: [22] Guidetti, D.: A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions.Rend. Semin. Mat. Univ. Padova 84 (1990), 1-37 (1991). MR 1101280
Reference: [23] Hieber, M., Rehberg, J.: Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains.SIAM J. Math. Anal. 40 (2008), 292-305. Zbl 1221.35194, MR 2403322, 10.1137/070683829
Reference: [24] Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces.Calculus of variations and geometric evolution problems. (Cetraro, 1996), Berlin: Springer. Lect. Notes Math. 1713 (1999), 45-84. Zbl 0942.35047, MR 1731639
Reference: [25] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Moskva: Izdat. `Nauka' (1967), Russian. MR 0241822
Reference: [26] Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation.Calc. Var. Partial Differ. Equ. 3 (1995), 253-271. Zbl 0821.35003, MR 1386964, 10.1007/BF01205007
Reference: [27] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems.Progress in Nonlinear Differential Equations and their Applications. 16. Basel: Birkhäuser (1995). Zbl 0816.35001, MR 1329547
Reference: [28] Lunardi, A.: Interpolation Theory. 2nd ed.Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 9. Pisa: Edizioni della Normale (2009). Zbl 1171.41001, MR 2523200
Reference: [29] Mikula, K., Ševčovič, D.: Computational and qualitative aspects of evolution of curves driven by curvature and external force.Comput. Vis. Sci. 6 (2004), 211-225. MR 2071441, 10.1007/s00791-004-0131-6
Reference: [30] Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time.J. Math. Anal. Appl. 256 (2001), 405-430. Zbl 0994.35076, MR 1821747, 10.1006/jmaa.2000.7247
Reference: [31] Prüss, J.: Maximal regularity for evolution equations in {$L_p$}-spaces.Conf. Semin. Mat. Univ. Bari (2002), 1-39 (2003). MR 1988408
Reference: [32] Saal, J.: Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary.Electron. J. Differ. Equ., Conf. 15 (2007), 365-375. MR 2316145
Reference: [33] Simonett, G.: The Willmore flow near spheres.Differ. Integral Equ. 14 (2001), 1005-1014. Zbl 1161.35429, MR 1827100
Reference: [34] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Volume I: Fixed-point theorems. Translated from the German by Peter R. Wadsack.New York: Springer-Verlag (1993). Zbl 0794.47033, MR 0816732
Reference: [35] Zhu, X.-P.: Lectures on Mean Curvature Flows.AMS/IP Studies in Advanced Mathematics 32. Providence, RI: American Mathematical Society (AMS), Somerville: International Press (2002). Zbl 1197.53087, MR 1931534
.

Files

Files Size Format View
CzechMathJ_62-2012-2_3.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo