Previous |  Up |  Next

Article

Title: Second order difference inclusions of monotone type (English)
Author: Apreutesei, G.
Author: Apreutesei, N.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 123-130
Summary lang: English
.
Category: math
.
Summary: The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations. (English)
Keyword: anti-periodic solution
Keyword: maximal monotone operator
Keyword: Yosida approximation
MSC: 34A60
MSC: 34G25
MSC: 39A12
MSC: 39A23
MSC: 47H05
idZBL: Zbl 1265.39006
idMR: MR2978258
DOI: 10.21136/MB.2012.142858
.
Date available: 2012-06-08T10:05:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142858
.
Reference: [1] Aftabizadeh, A., Pavel, N.: Nonlinear boundary value problems for some ordinary and partial differential equations associated with monotone operators.J. Math. Anal. Appl. 156 (1991), 535-557. Zbl 0734.34060, MR 1103028, 10.1016/0022-247X(91)90413-T
Reference: [2] Aftabizadeh, A., Aizicovici, S., Pavel, N.: On a class of second order anti-periodic boundary value problems.J. Math. Anal. Appl. 171 (1992), 301-320. Zbl 0767.34047, MR 1194081, 10.1016/0022-247X(92)90345-E
Reference: [3] Agarwal, R., O'Regan, D., Lakshmikantham, V.: Discrete second order inclusions.J. Difference Equ. Appl. 9 (2003), 879-885. Zbl 1047.39013, MR 1996340, 10.1080/1023619031000097044
Reference: [4] Aizicovici, S., Pavel, N.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert spaces.J. Funct. Anal. 99 (1991), 387-408. MR 1121619, 10.1016/0022-1236(91)90046-8
Reference: [5] Aizicovici, S., Reich, S.: Anti-periodic solutions to difference inclusions in Banach spaces.Dyn. Syst. Appl. 1 (1992), 121-130. Zbl 0756.39001, MR 1171125
Reference: [6] Apreutesei, G., Apreutesei, N.: Continuous dependence on data for bilocal difference equations.J. Difference Equ. Appl. 15 (2009), 511-527. Zbl 1176.39003, MR 2523089, 10.1080/10236190802192975
Reference: [7] Apreutesei, N.: On a class of difference equations of monotone type.J. Math. Anal. Appl. 288 (2003), 833-851. Zbl 1040.39002, MR 2020200, 10.1016/j.jmaa.2003.09.017
Reference: [8] Apreutesei, N.: Nonlinear Second Order Evolution Equations of Monotone Type and Applications.Pushpa Publishing House, India (2007). Zbl 1152.34001, MR 2419289
Reference: [9] Barbu, V.: A class of boundary problems for second order abstract differential equations.J. Fac. Sci. Univ. Tokyo, Sect. I A 19 (1972), 295-319. Zbl 0256.47052, MR 0331133
Reference: [10] Rouhani, B. Djafari, Khatibzadeh, H.: Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations.Nonlinear Anal., Theory Methods Appl. 70 (2009), 4369-4376. MR 2514767
Reference: [11] Stehlík, P., Tisdell, C. C.: On boundary value problems for second-order discrete inclusions.Bound. Value Probl. 2005 (2005), 153-164. Zbl 1146.39031, MR 2198748
.

Files

Files Size Format View
MathBohem_137-2012-2_2.pdf 227.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo