Previous |  Up |  Next

Article

Title: Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces (English)
Author: Olatinwo, Memudu Olaposi
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 1
Year: 2012
Pages: 79-87
Summary lang: English
.
Category: math
.
Summary: In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above. (English)
Keyword: arbitrary Banach space setting
Keyword: Jungck–Mann and Jungck–Ishikawa iterative processes
Keyword: convex metric space
MSC: 47H10
MSC: 54H25
idZBL: Zbl 06204922
idMR: MR3060010
.
Date available: 2012-06-25T08:24:57Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/142875
.
Reference: [1] Agarwal, R. P., O’Regan, D., Sahu, D. R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Topological Fixed Point Theory and Its Applications, Vol. 6 6 Springer Science & Bussiness Media, 2009. Zbl 1176.47037, MR 2508013
Reference: [2] Banach, S.: Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fund. Math. 3 (1922), 133–181.
Reference: [3] Beg, I.: Structure of the set of fixed points of nonexpansive mappings on convex metric spaces. Ann. Univ. Marie Curie-Sklodowska Sec. 52, Sec. A (1998), 7–14. Zbl 1004.54031, MR 1728052
Reference: [4] Beg, I.: Inequalities in metric spaces with applications. Topological Methods in Nonlinear Analysis 17 (2001), 183–190. Zbl 0998.47040, MR 1846986
Reference: [5] Berinde, V.: On the convergence of Mann iteration for a class of quasi-contractive operators. North University of Baia Mare, Preprint, 2003.
Reference: [6] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. Zbl 1100.47054, MR 2076050
Reference: [7] Berinde, V.: Iterative Approximation of Fixed Points. Springer-Verlag, Berlin–Heidelberg, 2007. Zbl 1165.47047, MR 2323613
Reference: [8] Berinde, V.: A convergence theorem for Mann iteration in the class of Zamfirescu operators. Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45, 1 (2007), 33–41. Zbl 1164.47065, MR 2371084
Reference: [9] Berinde, V.: Some remarks on a fixed point theorem for Ciric-type almost contractions. Carpathian J. Math. 25, 2 (2009), 157–162. Zbl 1249.54078, MR 2731191
Reference: [10] Chatterjea, S. K.: Fixed-point theorems. C. R. Acad. Bulgare Sci. 10 (1972), 727–730. Zbl 0274.54033, MR 0324493
Reference: [11] Ciric, Lj. B.: Generalized contractions and fixed point theorems. Publ. Inst. Math. (Beograd) 12, 26 (1971), 19–26. Zbl 0234.54029, MR 0309092
Reference: [12] Ciric, Lj. B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. Zbl 0291.54056, MR 0356011, 10.2307/2040075
Reference: [13] Ciric, L.: On some discontinuous fixed point theorems on convex metric spaces. Czechoslovak Math. J. 43 (1993), 319–326. MR 1211753
Reference: [14] Guay, M. D., Singh, K. L., Whitfield, J. H. M.: Fxed point theorems for nonexpansive mappings in convex metric spaces. In: Singh, S. P., Barry, J. H. (eds.) Proceedings of Conference on Nonlinear Analysis 80, Marcel Dekker Inc., New York, 1982, 179–189. MR 0689554
Reference: [15] Ishikawa, S.: Fixed point by a new iteration method. Proc. Amer. Math. Soc. 44, 1 (1974), 147–150. MR 0336469, 10.1090/S0002-9939-1974-0336469-5
Reference: [16] Jungck, G.: Commuting Mappings and Fixed Points. Amer. Math. Monthly 83, 4 (1976), 261–263. Zbl 0321.54025, MR 0400196, 10.2307/2318216
Reference: [17] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71–76. Zbl 0209.27104, MR 0257837
Reference: [18] Kannan, R.: Some results on fixed points III. Fund. Math. 70, 2 (1971), 169–177. Zbl 0246.47065, MR 0283649
Reference: [19] Kannan, R.: Construction of fixed points of a class of nonlinear mappings. J. Math. Anal. Appl. 41 (1973), 430–438. Zbl 0261.47037, MR 0320837, 10.1016/0022-247X(73)90218-7
Reference: [20] Mann, W. R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 44 (1953), 506–510. Zbl 0050.11603, MR 0054846, 10.1090/S0002-9939-1953-0054846-3
Reference: [21] Olatinwo, M. O.: Some stability and strong convergence results for the Jungck-Ishikawa iteration process. Creative Math. Inf. 17 (2008), 33–42. Zbl 1199.47282, MR 2409230
Reference: [22] Popescu, O.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Mathematical Communications 12 (2007), 195–202. Zbl 1153.47055, MR 2382455
Reference: [23] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. Zbl 0267.47032, MR 0348565, 10.1090/S0002-9947-1974-0348565-1
Reference: [24] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 2 (1976), 741–750. Zbl 0353.47029, MR 0430880, 10.1016/0022-247X(76)90038-X
Reference: [25] Rus, I. A.: Generalized Contractions and Applications. Cluj Univ. Press, Cluj Napoca, 2001. Zbl 0968.54029, MR 1947742
Reference: [26] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory, 1950–2000. Romanian Contributions, House of the Book of Science, Cluj Napoca, 2002. Zbl 1005.54037, MR 1947195
Reference: [27] Shimizu, T., Takahashi, W.: Fixed point theorems in certain convex metric spaces. Math. Japon. 37 (1992), 855–859. Zbl 0764.47030, MR 1186552
Reference: [28] Singh, S. L., Bhatnagar, C., Mishra, S. N.: Stability of Jungck-type iterative procedures. Internat. J. Math. & Math. Sc. 19 (2005), 3035–3043. Zbl 1117.26005, MR 2206082, 10.1155/IJMMS.2005.3035
Reference: [29] Takahashi, W.: A convexity in metric spaces and nonexpansive mapping I. Kodai Math. Sem. Rep. 22 (1970), 142–149. MR 0267565, 10.2996/kmj/1138846111
Reference: [30] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292–298. Zbl 0239.54030, MR 0310859, 10.1007/BF01304884
.

Files

Files Size Format View
ActaOlom_51-2012-1_6.pdf 223.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo