Previous |  Up |  Next

Article

Title: On the localization of the spectrum for quasi-selfadjoint extensions of a Carleman operator (English)
Author: Bahri, S. M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 249-258
Summary lang: English
.
Category: math
.
Summary: In the present work, using a formula describing all scalar spectral functions of a Carleman operator $A$ of defect indices $( 1,1) $ in the Hilbert space $L^{2}( X,\mu ) $ that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator $A$. (English)
Keyword: defect indices
Keyword: integral operator
Keyword: quasi-selfadjoint extension
Keyword: spectral theory
MSC: 45C05
MSC: 45P05
MSC: 47B25
MSC: 58C40
idZBL: Zbl 1265.45001
idMR: MR3112486
DOI: 10.21136/MB.2012.142892
.
Date available: 2012-08-19T21:14:02Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142892
.
Reference: [1] Akhiezer, N. I., Glazman, I. M.: Theory of Linear Operators in Hilbert Space.Dover, New York (1993). Zbl 0874.47001, MR 1255973
Reference: [2] Aleksandrov, E. L.: On the resolvents of symmetric operators which are not densely defined.Russian Izv. Vyssh. Uchebn. Zaved., Mat. 3-12 (1970). MR 0287345
Reference: [3] Bahri, S. M.: On the extension of a certain class of Carleman operators.Z. Anal. Anwend. 26 57-64 (2007). Zbl 1142.47027, MR 2306105, 10.4171/ZAA/1310
Reference: [4] Bahri, S. M.: Spectral properties of a certain class of Carleman operators.Arch. Math., Brno 43 163-175 (2007). Zbl 1164.05037, MR 2354805
Reference: [5] Bahri, S. M.: On convex hull of orthogonal scalar spectral functions of a Carleman operator.Bol. Soc. Parana. Mat. (3) 26 9-18 (2008). Zbl 1178.45019, MR 2505450
Reference: [6] Berezanskii, Yu. M.: Expansions in Eigenfunctions of Selfadjoint Operators.Transl. Math. Monogr., 17, Amer. Math. Soc., Providence, RI (1968). Zbl 0157.16601, MR 0222718
Reference: [7] Carleman, T.: Sur les équations intégrales singuli ères à noyau réel et symétrique.Almquwist Wiksells Boktryckeri Uppsala (1923).
Reference: [8] Gresztesy, F., Makarov, K., Tsekanovskii, E.: An addendum to Krein's formula.J. Math. Anal. Appl. 222 594-606 (1998). MR 1628437, 10.1006/jmaa.1998.5948
Reference: [9] Glazman, I. M.: On a class of solutions of the classical moment problem.Zap. Khar'kov. Mat. Obehch 20 95-98 (1951). MR 0049252
Reference: [10] Glazman, I. M., Naiman, P. B.: On the convex hull of orthogonal spectral functions.Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 102 445-448 (1955). MR 0074636
Reference: [11] Gorbachuk, M. L., Gorbachuk, V. I.: M. G. Krein's lectures on entire operators.Birkhäuser, Basel (1997). Zbl 0883.47008, MR 1466698
Reference: [12] Allan, Gut: Probability: A graduate course.Springer, New York (2005). MR 2125120
Reference: [13] Korotkov, V. B.: Integral Operators.Russian Nauka, Novosibirsk (1983). Zbl 0558.45013
Reference: [14] Kurasov, P., Kuroda, S. T.: Krein's formula and perturbation theory.J. Oper. Theory 51 321-334 (2004). MR 2074184
Reference: [15] Langer, H., Textorius, B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space.Pacific J. Math. 72 135-165 (1977). Zbl 0335.47014, MR 0463964, 10.2140/pjm.1977.72.135
Reference: [16] Simon, B.: Trace Ideals and Their Applications, 2nd edition.Amer. Math. Soc., Providence, RI (2005). MR 2154153
Reference: [17] Shtraus, A. V.: Extensions and generalized resolvents of a symmetric operator which is not densely defined.Russian Izv. Akad. Nauk SSSR, Ser. Mat. {\it 34} (1970), 175-202; Math. USSR, Izv. {\it 4} (1970), 179-208. Zbl 0216.16403, MR 0278098
Reference: [18] Targonski, Gy. I.: On Carleman integral operators.Proc. Amer. Math. Soc. 18 (1967),450-456. Zbl 0147.12002, MR 0215139
Reference: [19] Weidman, J.: Carleman operators.Manuscripts Math. 1-38 (1970), 2. 10.1007/BF01168477
Reference: [20] Weidman, J.: Linear operators in Hilbert spaces.Springer, New-York (1980).
.

Files

Files Size Format View
MathBohem_137-2012-3_1.pdf 244.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo